限制多项式归纳法与无参数普通归纳法

IF 0.5 3区 数学 Q3 MATHEMATICS
Z. Adamowicz
{"title":"限制多项式归纳法与无参数普通归纳法","authors":"Z. Adamowicz","doi":"10.4064/fm887-10-2021","DOIUrl":null,"url":null,"abstract":". The paper is a continuation of [Z. Adamowicz, Fund. Math. 242 (2018)]. We consider conservativity questions between, on the one hand, arithmetical theories in which the operations of successor, addition and multiplication are not provably total and which are fragments of the bounded arithmetic theory I ∆ 0 and, on the other hand, exten-sions of those theories to subtheories of Buss’s bounded arithmetic S 2 . These questions are related to the problem of finite axiomatizability of a version of I ∆ 0 in which the totality of the operations is not assumed.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricted polynomial induction versus\\nparameter free ordinary induction\",\"authors\":\"Z. Adamowicz\",\"doi\":\"10.4064/fm887-10-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The paper is a continuation of [Z. Adamowicz, Fund. Math. 242 (2018)]. We consider conservativity questions between, on the one hand, arithmetical theories in which the operations of successor, addition and multiplication are not provably total and which are fragments of the bounded arithmetic theory I ∆ 0 and, on the other hand, exten-sions of those theories to subtheories of Buss’s bounded arithmetic S 2 . These questions are related to the problem of finite axiomatizability of a version of I ∆ 0 in which the totality of the operations is not assumed.\",\"PeriodicalId\":55138,\"journal\":{\"name\":\"Fundamenta Mathematicae\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm887-10-2021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm887-10-2021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。这篇论文是[Z]的延续。Adamowicz,基金。数学学报,242(2018)。我们一方面考虑后继运算、加法运算和乘法运算不能证明为全的算术理论和有界算术理论I∆0的片段之间的保守性问题,另一方面考虑这些理论对Buss有界算术s2的子理论的推广。这些问题与I∆0的有限公理化性问题有关,其中不假设所有的运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restricted polynomial induction versus parameter free ordinary induction
. The paper is a continuation of [Z. Adamowicz, Fund. Math. 242 (2018)]. We consider conservativity questions between, on the one hand, arithmetical theories in which the operations of successor, addition and multiplication are not provably total and which are fragments of the bounded arithmetic theory I ∆ 0 and, on the other hand, exten-sions of those theories to subtheories of Buss’s bounded arithmetic S 2 . These questions are related to the problem of finite axiomatizability of a version of I ∆ 0 in which the totality of the operations is not assumed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信