{"title":"一种基于交通的三维面部表情识别算法","authors":"Tie-xiang Li, Pei Chuang, M. Yueh","doi":"10.4310/amsa.2022.v7.n1.a3","DOIUrl":null,"url":null,"abstract":"Facial expression recognition (FER) is an active topic that has many applications. The development of effective algorithms for FER has been a competitive research field in the last two decades. In this paper, we propose a fully automatic 3D FER method based on the sparse approximation of 2D feature images. For a prescribed feature defined on the 3D facial surface, we apply a parameterization that not only maps the facial surface onto the unit disk but also locally preserves the feature. To ensure the uniqueness of the solution, some aligning constraints are further taken into account while computing the desired parameterization. The facial surface associated with the feature is then converted into the 2D image of the parameter domain. To recognize the expression of a test facial image, we apply an existing 2D expression recognition model, which is built upon sparse representation. Numerical experiments indicate that the accuracy of the proposed FER algorithm reaches 71.42% on a benchmark facial expression database, which is promising for practical applications.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal transportation-based recognition algorithm for 3D facial expressions\",\"authors\":\"Tie-xiang Li, Pei Chuang, M. Yueh\",\"doi\":\"10.4310/amsa.2022.v7.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition (FER) is an active topic that has many applications. The development of effective algorithms for FER has been a competitive research field in the last two decades. In this paper, we propose a fully automatic 3D FER method based on the sparse approximation of 2D feature images. For a prescribed feature defined on the 3D facial surface, we apply a parameterization that not only maps the facial surface onto the unit disk but also locally preserves the feature. To ensure the uniqueness of the solution, some aligning constraints are further taken into account while computing the desired parameterization. The facial surface associated with the feature is then converted into the 2D image of the parameter domain. To recognize the expression of a test facial image, we apply an existing 2D expression recognition model, which is built upon sparse representation. Numerical experiments indicate that the accuracy of the proposed FER algorithm reaches 71.42% on a benchmark facial expression database, which is promising for practical applications.\",\"PeriodicalId\":42896,\"journal\":{\"name\":\"Annals of Mathematical Sciences and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/amsa.2022.v7.n1.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/amsa.2022.v7.n1.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An optimal transportation-based recognition algorithm for 3D facial expressions
Facial expression recognition (FER) is an active topic that has many applications. The development of effective algorithms for FER has been a competitive research field in the last two decades. In this paper, we propose a fully automatic 3D FER method based on the sparse approximation of 2D feature images. For a prescribed feature defined on the 3D facial surface, we apply a parameterization that not only maps the facial surface onto the unit disk but also locally preserves the feature. To ensure the uniqueness of the solution, some aligning constraints are further taken into account while computing the desired parameterization. The facial surface associated with the feature is then converted into the 2D image of the parameter domain. To recognize the expression of a test facial image, we apply an existing 2D expression recognition model, which is built upon sparse representation. Numerical experiments indicate that the accuracy of the proposed FER algorithm reaches 71.42% on a benchmark facial expression database, which is promising for practical applications.