{"title":"变延迟项分数阶受电弓方程的计算解","authors":"M. Khalid, S. K. Fareeha, S. Mariam","doi":"10.4310/amsa.2021.v6.n2.a1","DOIUrl":null,"url":null,"abstract":"Delay Differential Equations DDEs have great importance in real life phenomena. Among them is a special type of equation known as Pantograph Delay Differential Equation PDDE. Such kind of equations cannot be solved using ordinary methods, and hence, it becomes a challenge when the complexity increases, especially if one wants to study Fractional Pantograph Delay Differential Equation (FPDDE). In this work, FPDDEs with a general Delay term is solved numerically by an iteration method called Perturbation Iteration Algorithm (PIA). It is based on the Taylor series and elim-inates the non-linear terms easily. Iterative results are discussed in detail in both tabular and graphical forms. A graphical interpre-tation of the variability of the Delay term is also provided for a deeper understanding of its range.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational solution of fractional pantograph equation with varying delay term\",\"authors\":\"M. Khalid, S. K. Fareeha, S. Mariam\",\"doi\":\"10.4310/amsa.2021.v6.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delay Differential Equations DDEs have great importance in real life phenomena. Among them is a special type of equation known as Pantograph Delay Differential Equation PDDE. Such kind of equations cannot be solved using ordinary methods, and hence, it becomes a challenge when the complexity increases, especially if one wants to study Fractional Pantograph Delay Differential Equation (FPDDE). In this work, FPDDEs with a general Delay term is solved numerically by an iteration method called Perturbation Iteration Algorithm (PIA). It is based on the Taylor series and elim-inates the non-linear terms easily. Iterative results are discussed in detail in both tabular and graphical forms. A graphical interpre-tation of the variability of the Delay term is also provided for a deeper understanding of its range.\",\"PeriodicalId\":42896,\"journal\":{\"name\":\"Annals of Mathematical Sciences and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/amsa.2021.v6.n2.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/amsa.2021.v6.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computational solution of fractional pantograph equation with varying delay term
Delay Differential Equations DDEs have great importance in real life phenomena. Among them is a special type of equation known as Pantograph Delay Differential Equation PDDE. Such kind of equations cannot be solved using ordinary methods, and hence, it becomes a challenge when the complexity increases, especially if one wants to study Fractional Pantograph Delay Differential Equation (FPDDE). In this work, FPDDEs with a general Delay term is solved numerically by an iteration method called Perturbation Iteration Algorithm (PIA). It is based on the Taylor series and elim-inates the non-linear terms easily. Iterative results are discussed in detail in both tabular and graphical forms. A graphical interpre-tation of the variability of the Delay term is also provided for a deeper understanding of its range.