环域泊松方程的快速谱解

IF 0.4 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Te-Sheng Lin, C-Y. He, Wei-Fan Hu
{"title":"环域泊松方程的快速谱解","authors":"Te-Sheng Lin, C-Y. He, Wei-Fan Hu","doi":"10.4310/amsa.2020.v5.n1.a3","DOIUrl":null,"url":null,"abstract":"A simple and efficient spectral method is formulated to solve Poisson equation in an annular domain. The solver relies on the Fourier expansion, where the differential equations for the Fourier coefficients are solved using an ultraspherical spectral method. For a domain with N grid points in the polar direction and M grid points in the radial direction, the solver only requires O ( NM log 2 N ) arith-metic operations.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast spectral solver for Poisson equation in an annular domain\",\"authors\":\"Te-Sheng Lin, C-Y. He, Wei-Fan Hu\",\"doi\":\"10.4310/amsa.2020.v5.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple and efficient spectral method is formulated to solve Poisson equation in an annular domain. The solver relies on the Fourier expansion, where the differential equations for the Fourier coefficients are solved using an ultraspherical spectral method. For a domain with N grid points in the polar direction and M grid points in the radial direction, the solver only requires O ( NM log 2 N ) arith-metic operations.\",\"PeriodicalId\":42896,\"journal\":{\"name\":\"Annals of Mathematical Sciences and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/amsa.2020.v5.n1.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/amsa.2020.v5.n1.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种简单有效的求解环域泊松方程的谱法。求解器依赖于傅里叶展开,其中傅里叶系数的微分方程是用超球面光谱方法求解的。对于极方向有N个网格点,径向有M个网格点的域,求解器只需要O (NM log 2 N)次算术运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast spectral solver for Poisson equation in an annular domain
A simple and efficient spectral method is formulated to solve Poisson equation in an annular domain. The solver relies on the Fourier expansion, where the differential equations for the Fourier coefficients are solved using an ultraspherical spectral method. For a domain with N grid points in the polar direction and M grid points in the radial direction, the solver only requires O ( NM log 2 N ) arith-metic operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematical Sciences and Applications
Annals of Mathematical Sciences and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信