有界杀伤向量场的代数性质

IF 0.5 4区 数学 Q3 MATHEMATICS
Ming Xu, Yu.G. Nikonorov
{"title":"有界杀伤向量场的代数性质","authors":"Ming Xu, Yu.G. Nikonorov","doi":"10.4310/ajm.2021.v25.n2.a4","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a connected Riemannian manifold $M$ where a connected Lie group $G$ acts effectively and isometrically. Assume $X\\in\\mathfrak{g}=\\mathrm{Lie}(G)$ defines a bounded Killing vector field, we find some crucial algebraic properties of the decomposition $X=X_r+X_s$ according to a Levi decomposition $\\mathfrak{g}=\\mathfrak{r}(\\mathfrak{g})+\\mathfrak{s}$, where $\\mathfrak{r}(\\mathfrak{g})$ is the radical, and $\\mathfrak{s}=\\mathfrak{s}_c\\oplus\\mathfrak{s}_{nc}$ is a Levi subalgebra. The decomposition $X=X_r+X_s$ coincides with the abstract Jordan decomposition of $X$, and is unique in the sense that it does not depend on the choice of $\\mathfrak{s}$. By these properties, we prove that the eigenvalues of $\\mathrm{ad}(X):\\mathfrak{g}\\rightarrow\\mathfrak{g}$ are all imaginary. Furthermore, when $M=G/H$ is a Riemannian homogeneous space, we can completely determine all bounded Killing vector fields induced by vectors in $\\mathfrak{g}$. We prove that the space of all these bounded Killing vector fields, or equivalently the space of all bounded vectors in $\\mathfrak{g}$ for $G/H$, is a compact Lie subalgebra, such that its semi-simple part is the ideal $\\mathfrak{c}_{\\mathfrak{s}_c}(\\mathfrak{r}(\\mathfrak{g}))$ of $\\mathfrak{g}$, and its Abelian part is the sum of $\\mathfrak{c}_{\\mathfrak{c}(\\mathfrak{r}(\\mathfrak{g}))} (\\mathfrak{s}_{nc})$ and all two-dimensional irreducible $\\mathrm{ad}(\\mathfrak{r}(\\mathfrak{g}))$-representations in $\\mathfrak{c}_{\\mathfrak{c}(\\mathfrak{n})}(\\mathfrak{s}_{nc})$ corresponding to nonzero imaginary weights, i.e. $\\mathbb{R}$-linear functionals $\\lambda:\\mathfrak{r}(\\mathfrak{g})\\rightarrow \\mathfrak{r}(\\mathfrak{g})/\\mathfrak{n}(\\mathfrak{g}) \\rightarrow\\mathbb{R}\\sqrt{-1}$, where $\\mathfrak{n}(\\mathfrak{g})$ is the nilradical.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":"195 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Algebraic properties of bounded killing vector fields\",\"authors\":\"Ming Xu, Yu.G. Nikonorov\",\"doi\":\"10.4310/ajm.2021.v25.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a connected Riemannian manifold $M$ where a connected Lie group $G$ acts effectively and isometrically. Assume $X\\\\in\\\\mathfrak{g}=\\\\mathrm{Lie}(G)$ defines a bounded Killing vector field, we find some crucial algebraic properties of the decomposition $X=X_r+X_s$ according to a Levi decomposition $\\\\mathfrak{g}=\\\\mathfrak{r}(\\\\mathfrak{g})+\\\\mathfrak{s}$, where $\\\\mathfrak{r}(\\\\mathfrak{g})$ is the radical, and $\\\\mathfrak{s}=\\\\mathfrak{s}_c\\\\oplus\\\\mathfrak{s}_{nc}$ is a Levi subalgebra. The decomposition $X=X_r+X_s$ coincides with the abstract Jordan decomposition of $X$, and is unique in the sense that it does not depend on the choice of $\\\\mathfrak{s}$. By these properties, we prove that the eigenvalues of $\\\\mathrm{ad}(X):\\\\mathfrak{g}\\\\rightarrow\\\\mathfrak{g}$ are all imaginary. Furthermore, when $M=G/H$ is a Riemannian homogeneous space, we can completely determine all bounded Killing vector fields induced by vectors in $\\\\mathfrak{g}$. We prove that the space of all these bounded Killing vector fields, or equivalently the space of all bounded vectors in $\\\\mathfrak{g}$ for $G/H$, is a compact Lie subalgebra, such that its semi-simple part is the ideal $\\\\mathfrak{c}_{\\\\mathfrak{s}_c}(\\\\mathfrak{r}(\\\\mathfrak{g}))$ of $\\\\mathfrak{g}$, and its Abelian part is the sum of $\\\\mathfrak{c}_{\\\\mathfrak{c}(\\\\mathfrak{r}(\\\\mathfrak{g}))} (\\\\mathfrak{s}_{nc})$ and all two-dimensional irreducible $\\\\mathrm{ad}(\\\\mathfrak{r}(\\\\mathfrak{g}))$-representations in $\\\\mathfrak{c}_{\\\\mathfrak{c}(\\\\mathfrak{n})}(\\\\mathfrak{s}_{nc})$ corresponding to nonzero imaginary weights, i.e. $\\\\mathbb{R}$-linear functionals $\\\\lambda:\\\\mathfrak{r}(\\\\mathfrak{g})\\\\rightarrow \\\\mathfrak{r}(\\\\mathfrak{g})/\\\\mathfrak{n}(\\\\mathfrak{g}) \\\\rightarrow\\\\mathbb{R}\\\\sqrt{-1}$, where $\\\\mathfrak{n}(\\\\mathfrak{g})$ is the nilradical.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2021.v25.n2.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n2.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文考虑一个连通黎曼流形 $M$ 连李群在哪里 $G$ 行动有效和等距。假设 $X\in\mathfrak{g}=\mathrm{Lie}(G)$ 定义了有界杀伤向量场,得到了分解的一些重要的代数性质 $X=X_r+X_s$ 根据李维分解 $\mathfrak{g}=\mathfrak{r}(\mathfrak{g})+\mathfrak{s}$,其中 $\mathfrak{r}(\mathfrak{g})$ 是自由基,和 $\mathfrak{s}=\mathfrak{s}_c\oplus\mathfrak{s}_{nc}$ 是李维子代数。分解 $X=X_r+X_s$ 与抽象的约当分解相吻合 $X$,它的独特之处在于它不依赖于选择 $\mathfrak{s}$. 通过这些性质,我们证明了 $\mathrm{ad}(X):\mathfrak{g}\rightarrow\mathfrak{g}$ 都是虚构的。此外,当 $M=G/H$ 是一个黎曼齐次空间,我们可以完全确定由 $\mathfrak{g}$. 我们证明了所有这些有界杀戮向量场的空间,或者等价的所有有界向量的空间 $\mathfrak{g}$ 为了 $G/H$是一个紧李子代数,使得它的半简单部分是理想的 $\mathfrak{c}_{\mathfrak{s}_c}(\mathfrak{r}(\mathfrak{g}))$ 的 $\mathfrak{g}$,它的阿贝尔部分是 $\mathfrak{c}_{\mathfrak{c}(\mathfrak{r}(\mathfrak{g}))} (\mathfrak{s}_{nc})$ 而且都是二维不可约的 $\mathrm{ad}(\mathfrak{r}(\mathfrak{g}))$-在 $\mathfrak{c}_{\mathfrak{c}(\mathfrak{n})}(\mathfrak{s}_{nc})$ 对应于非零虚权,即 $\mathbb{R}$-线性泛函 $\lambda:\mathfrak{r}(\mathfrak{g})\rightarrow \mathfrak{r}(\mathfrak{g})/\mathfrak{n}(\mathfrak{g}) \rightarrow\mathbb{R}\sqrt{-1}$,其中 $\mathfrak{n}(\mathfrak{g})$ 是零基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic properties of bounded killing vector fields
In this paper, we consider a connected Riemannian manifold $M$ where a connected Lie group $G$ acts effectively and isometrically. Assume $X\in\mathfrak{g}=\mathrm{Lie}(G)$ defines a bounded Killing vector field, we find some crucial algebraic properties of the decomposition $X=X_r+X_s$ according to a Levi decomposition $\mathfrak{g}=\mathfrak{r}(\mathfrak{g})+\mathfrak{s}$, where $\mathfrak{r}(\mathfrak{g})$ is the radical, and $\mathfrak{s}=\mathfrak{s}_c\oplus\mathfrak{s}_{nc}$ is a Levi subalgebra. The decomposition $X=X_r+X_s$ coincides with the abstract Jordan decomposition of $X$, and is unique in the sense that it does not depend on the choice of $\mathfrak{s}$. By these properties, we prove that the eigenvalues of $\mathrm{ad}(X):\mathfrak{g}\rightarrow\mathfrak{g}$ are all imaginary. Furthermore, when $M=G/H$ is a Riemannian homogeneous space, we can completely determine all bounded Killing vector fields induced by vectors in $\mathfrak{g}$. We prove that the space of all these bounded Killing vector fields, or equivalently the space of all bounded vectors in $\mathfrak{g}$ for $G/H$, is a compact Lie subalgebra, such that its semi-simple part is the ideal $\mathfrak{c}_{\mathfrak{s}_c}(\mathfrak{r}(\mathfrak{g}))$ of $\mathfrak{g}$, and its Abelian part is the sum of $\mathfrak{c}_{\mathfrak{c}(\mathfrak{r}(\mathfrak{g}))} (\mathfrak{s}_{nc})$ and all two-dimensional irreducible $\mathrm{ad}(\mathfrak{r}(\mathfrak{g}))$-representations in $\mathfrak{c}_{\mathfrak{c}(\mathfrak{n})}(\mathfrak{s}_{nc})$ corresponding to nonzero imaginary weights, i.e. $\mathbb{R}$-linear functionals $\lambda:\mathfrak{r}(\mathfrak{g})\rightarrow \mathfrak{r}(\mathfrak{g})/\mathfrak{n}(\mathfrak{g}) \rightarrow\mathbb{R}\sqrt{-1}$, where $\mathfrak{n}(\mathfrak{g})$ is the nilradical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信