随机环境下超临界分支过程的淬火加权矩

Pub Date : 2019-01-01 DOI:10.4310/ajm.2019.v23.n6.a5
Yuejiao Wang, Yingqiu Li, Quansheng Liu, Zaiming Liu
{"title":"随机环境下超临界分支过程的淬火加权矩","authors":"Yuejiao Wang, Yingqiu Li, Quansheng Liu, Zaiming Liu","doi":"10.4310/ajm.2019.v23.n6.a5","DOIUrl":null,"url":null,"abstract":"We consider a supercritical branching process $(Z_n)$ in an independent and identically distributed random environment $\\xi =(\\xi_n)$. Let $W$ be the limit of the natural martingale $W_n = Z_n / E_\\xi Z_n (n \\geq 0)$, where $E_\\xi $ denotes the conditional expectation given the environment $\\xi$. We find a necessary and sufficient condition for the existence of quenched weighted moments of $W$ of the form $E_{\\xi} W^{\\alpha} l(W)$, where $\\alpha > 1$ and $l$ is a positive function slowly varying at $\\infty$. The same conclusion is also proved for the maximum of the martingale $W^* = \\sup_{n\\geq 1} W_n $ instead of the limit variable $W$. In the proof we first show an extended version of Doob's inequality about weighted moments for nonnegative submartingales, which is of independent interest.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quenched weighted moments of a supercritical branching process in a random environment\",\"authors\":\"Yuejiao Wang, Yingqiu Li, Quansheng Liu, Zaiming Liu\",\"doi\":\"10.4310/ajm.2019.v23.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a supercritical branching process $(Z_n)$ in an independent and identically distributed random environment $\\\\xi =(\\\\xi_n)$. Let $W$ be the limit of the natural martingale $W_n = Z_n / E_\\\\xi Z_n (n \\\\geq 0)$, where $E_\\\\xi $ denotes the conditional expectation given the environment $\\\\xi$. We find a necessary and sufficient condition for the existence of quenched weighted moments of $W$ of the form $E_{\\\\xi} W^{\\\\alpha} l(W)$, where $\\\\alpha > 1$ and $l$ is a positive function slowly varying at $\\\\infty$. The same conclusion is also proved for the maximum of the martingale $W^* = \\\\sup_{n\\\\geq 1} W_n $ instead of the limit variable $W$. In the proof we first show an extended version of Doob's inequality about weighted moments for nonnegative submartingales, which is of independent interest.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2019.v23.n6.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2019.v23.n6.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了一个独立同分布随机环境$\xi =(\xi_n)$中的超临界分支过程$(Z_n)$。设$W$为自然鞅$W_n = Z_n / E_\xi Z_n (n \geq 0)$的极限,其中$E_\xi $表示给定环境$\xi$的条件期望。得到了形式为$E_{\xi} W^{\alpha} l(W)$的$W$的淬火加权矩存在的充分必要条件,其中$\alpha > 1$和$l$是在$\infty$处缓慢变化的正函数。对于鞅的最大值$W^* = \sup_{n\geq 1} W_n $而不是极限变量$W$也证明了同样的结论。在证明中,我们首先证明了关于非负子鞅的加权矩的Doob不等式的扩展版本,这是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Quenched weighted moments of a supercritical branching process in a random environment
We consider a supercritical branching process $(Z_n)$ in an independent and identically distributed random environment $\xi =(\xi_n)$. Let $W$ be the limit of the natural martingale $W_n = Z_n / E_\xi Z_n (n \geq 0)$, where $E_\xi $ denotes the conditional expectation given the environment $\xi$. We find a necessary and sufficient condition for the existence of quenched weighted moments of $W$ of the form $E_{\xi} W^{\alpha} l(W)$, where $\alpha > 1$ and $l$ is a positive function slowly varying at $\infty$. The same conclusion is also proved for the maximum of the martingale $W^* = \sup_{n\geq 1} W_n $ instead of the limit variable $W$. In the proof we first show an extended version of Doob's inequality about weighted moments for nonnegative submartingales, which is of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信