l - n的LIPSCHITZ域上变HARDY空间的实变刻画

IF 0.6 4区 数学 Q3 MATHEMATICS
Xiong Liu
{"title":"l - n的LIPSCHITZ域上变HARDY空间的实变刻画","authors":"Xiong Liu","doi":"10.4134/BKMS.B200545","DOIUrl":null,"url":null,"abstract":"Let Ω be a proper open subset of Rn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the “geometrical” variable Hardy spaces H p(·) r (Ω) and H p(·) z (Ω) on Ω, and then obtains the grand maximal function characterizations of H p(·) r (Ω) and H p(·) z (Ω) when Ω is a strongly Lipschitz domain of Rn. Moreover, the author further introduces the “geometrical” variable local Hardy spaces h p(·) r (Ω), and then establishes the atomic characterization of h p(·) r (Ω) when Ω is a bounded Lipschitz domain of Rn.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"58 1","pages":"745-765"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF ℝ n\",\"authors\":\"Xiong Liu\",\"doi\":\"10.4134/BKMS.B200545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Ω be a proper open subset of Rn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the “geometrical” variable Hardy spaces H p(·) r (Ω) and H p(·) z (Ω) on Ω, and then obtains the grand maximal function characterizations of H p(·) r (Ω) and H p(·) z (Ω) when Ω is a strongly Lipschitz domain of Rn. Moreover, the author further introduces the “geometrical” variable local Hardy spaces h p(·) r (Ω), and then establishes the atomic characterization of h p(·) r (Ω) when Ω is a bounded Lipschitz domain of Rn.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"58 1\",\"pages\":\"745-765\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B200545\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B200545","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设Ω为Rn和p(·)的真开子集:Ω→(0,∞)为满足全局log-Hölder连续条件的变指数函数。本文在Ω上引入了“几何”变量Hardy空间hp(·)r (Ω)和hp(·)z (Ω),得到了当Ω是Rn的强Lipschitz定域时,hp(·)r (Ω)和hp(·)z (Ω)的极大函数刻画。进一步引入了“几何”变量局部Hardy空间hp(·)r (Ω),并建立了当Ω是Rn的有界Lipschitz定域时hp(·)r (Ω)的原子表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF ℝ n
Let Ω be a proper open subset of Rn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the “geometrical” variable Hardy spaces H p(·) r (Ω) and H p(·) z (Ω) on Ω, and then obtains the grand maximal function characterizations of H p(·) r (Ω) and H p(·) z (Ω) when Ω is a strongly Lipschitz domain of Rn. Moreover, the author further introduces the “geometrical” variable local Hardy spaces h p(·) r (Ω), and then establishes the atomic characterization of h p(·) r (Ω) when Ω is a bounded Lipschitz domain of Rn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信