{"title":"l - n的LIPSCHITZ域上变HARDY空间的实变刻画","authors":"Xiong Liu","doi":"10.4134/BKMS.B200545","DOIUrl":null,"url":null,"abstract":"Let Ω be a proper open subset of Rn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the “geometrical” variable Hardy spaces H p(·) r (Ω) and H p(·) z (Ω) on Ω, and then obtains the grand maximal function characterizations of H p(·) r (Ω) and H p(·) z (Ω) when Ω is a strongly Lipschitz domain of Rn. Moreover, the author further introduces the “geometrical” variable local Hardy spaces h p(·) r (Ω), and then establishes the atomic characterization of h p(·) r (Ω) when Ω is a bounded Lipschitz domain of Rn.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"58 1","pages":"745-765"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF ℝ n\",\"authors\":\"Xiong Liu\",\"doi\":\"10.4134/BKMS.B200545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Ω be a proper open subset of Rn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the “geometrical” variable Hardy spaces H p(·) r (Ω) and H p(·) z (Ω) on Ω, and then obtains the grand maximal function characterizations of H p(·) r (Ω) and H p(·) z (Ω) when Ω is a strongly Lipschitz domain of Rn. Moreover, the author further introduces the “geometrical” variable local Hardy spaces h p(·) r (Ω), and then establishes the atomic characterization of h p(·) r (Ω) when Ω is a bounded Lipschitz domain of Rn.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"58 1\",\"pages\":\"745-765\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B200545\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B200545","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF ℝ n
Let Ω be a proper open subset of Rn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the “geometrical” variable Hardy spaces H p(·) r (Ω) and H p(·) z (Ω) on Ω, and then obtains the grand maximal function characterizations of H p(·) r (Ω) and H p(·) z (Ω) when Ω is a strongly Lipschitz domain of Rn. Moreover, the author further introduces the “geometrical” variable local Hardy spaces h p(·) r (Ω), and then establishes the atomic characterization of h p(·) r (Ω) when Ω is a bounded Lipschitz domain of Rn.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).