布尔乘法卷积与柯西-斯蒂尔杰核族

IF 0.6 4区 数学 Q3 MATHEMATICS
Raouf Fakhfakh
{"title":"布尔乘法卷积与柯西-斯蒂尔杰核族","authors":"Raouf Fakhfakh","doi":"10.4134/BKMS.B200380","DOIUrl":null,"url":null,"abstract":"Denote by M+ the set of probability measures supported on R+. Suppose Vν is the variance function of the Cauchy-Stieltjes Kernel (CSK) family K−(ν) generated by a non degenerate probability measure ν ∈ M+. We determine the formula for variance function under boolean multiplicative convolution power. This formula is used to identify the relation between variance functions under the map ν 7→ Mt(ν) = ( ν (t+1) )∪× 1 t+1 from M+ onto itself.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"58 1","pages":"515-526"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"BOOLEAN MULTIPLICATIVE CONVOLUTION AND CAUCHY-STIELTJES KERNEL FAMILIES\",\"authors\":\"Raouf Fakhfakh\",\"doi\":\"10.4134/BKMS.B200380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denote by M+ the set of probability measures supported on R+. Suppose Vν is the variance function of the Cauchy-Stieltjes Kernel (CSK) family K−(ν) generated by a non degenerate probability measure ν ∈ M+. We determine the formula for variance function under boolean multiplicative convolution power. This formula is used to identify the relation between variance functions under the map ν 7→ Mt(ν) = ( ν (t+1) )∪× 1 t+1 from M+ onto itself.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"58 1\",\"pages\":\"515-526\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B200380\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B200380","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

用M+表示R+上支持的概率测度集。假设Vν是Cauchy-Stieltjes Kernel (CSK)族K−(ν)的方差函数,由一个非简并概率测度ν∈M+生成。确定了布尔乘法卷积幂下方差函数的表达式。这个公式用于确定映射ν 7→Mt(ν) = (ν (t+1))∪× 1 t+1从M+到自身的方差函数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BOOLEAN MULTIPLICATIVE CONVOLUTION AND CAUCHY-STIELTJES KERNEL FAMILIES
Denote by M+ the set of probability measures supported on R+. Suppose Vν is the variance function of the Cauchy-Stieltjes Kernel (CSK) family K−(ν) generated by a non degenerate probability measure ν ∈ M+. We determine the formula for variance function under boolean multiplicative convolution power. This formula is used to identify the relation between variance functions under the map ν 7→ Mt(ν) = ( ν (t+1) )∪× 1 t+1 from M+ onto itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信