模上整数多项式的一些结果

IF 0.6 4区 数学 Q3 MATHEMATICS
A. Naghipour, J. S. Hafshejani
{"title":"模上整数多项式的一些结果","authors":"A. Naghipour, J. S. Hafshejani","doi":"10.4134/BKMS.B190846","DOIUrl":null,"url":null,"abstract":"Let M be a module over a commutative ring R. In this paper, we study Int(R,M), the module of integer-valued polynomials on M over R, and IntM (R), the ring of integer-valued polynomials on R over M . We establish some properties of Krull dimensions of Int(R,M) and IntM (R). We also determine when Int(R,M) and IntM (R) are nontrivial. Among the other results, it is shown that Int(Z,M) is not Noetherian module over IntM (Z) ∩ Int(Z), where M is a finitely generated Z-module.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"57 1","pages":"1165-1176"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES\",\"authors\":\"A. Naghipour, J. S. Hafshejani\",\"doi\":\"10.4134/BKMS.B190846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let M be a module over a commutative ring R. In this paper, we study Int(R,M), the module of integer-valued polynomials on M over R, and IntM (R), the ring of integer-valued polynomials on R over M . We establish some properties of Krull dimensions of Int(R,M) and IntM (R). We also determine when Int(R,M) and IntM (R) are nontrivial. Among the other results, it is shown that Int(Z,M) is not Noetherian module over IntM (Z) ∩ Int(Z), where M is a finitely generated Z-module.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"1165-1176\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B190846\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B190846","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M是交换环R上的一个模,本文研究了M / R上的整值多项式模Int(R,M)和R / M上的整值多项式环IntM (R)。我们建立了Int(R,M)和IntM (R)的Krull维的一些性质,并确定了Int(R,M)和IntM (R)在什么情况下是非平凡的。在其他结果中,证明了Int(Z,M)不是IntM (Z)∩Int(Z)上的Noetherian模,其中M是一个有限生成的Z模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES
Let M be a module over a commutative ring R. In this paper, we study Int(R,M), the module of integer-valued polynomials on M over R, and IntM (R), the ring of integer-valued polynomials on R over M . We establish some properties of Krull dimensions of Int(R,M) and IntM (R). We also determine when Int(R,M) and IntM (R) are nontrivial. Among the other results, it is shown that Int(Z,M) is not Noetherian module over IntM (Z) ∩ Int(Z), where M is a finitely generated Z-module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信