{"title":"模上整数多项式的一些结果","authors":"A. Naghipour, J. S. Hafshejani","doi":"10.4134/BKMS.B190846","DOIUrl":null,"url":null,"abstract":"Let M be a module over a commutative ring R. In this paper, we study Int(R,M), the module of integer-valued polynomials on M over R, and IntM (R), the ring of integer-valued polynomials on R over M . We establish some properties of Krull dimensions of Int(R,M) and IntM (R). We also determine when Int(R,M) and IntM (R) are nontrivial. Among the other results, it is shown that Int(Z,M) is not Noetherian module over IntM (Z) ∩ Int(Z), where M is a finitely generated Z-module.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"57 1","pages":"1165-1176"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES\",\"authors\":\"A. Naghipour, J. S. Hafshejani\",\"doi\":\"10.4134/BKMS.B190846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let M be a module over a commutative ring R. In this paper, we study Int(R,M), the module of integer-valued polynomials on M over R, and IntM (R), the ring of integer-valued polynomials on R over M . We establish some properties of Krull dimensions of Int(R,M) and IntM (R). We also determine when Int(R,M) and IntM (R) are nontrivial. Among the other results, it is shown that Int(Z,M) is not Noetherian module over IntM (Z) ∩ Int(Z), where M is a finitely generated Z-module.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"1165-1176\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B190846\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B190846","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES
Let M be a module over a commutative ring R. In this paper, we study Int(R,M), the module of integer-valued polynomials on M over R, and IntM (R), the ring of integer-valued polynomials on R over M . We establish some properties of Krull dimensions of Int(R,M) and IntM (R). We also determine when Int(R,M) and IntM (R) are nontrivial. Among the other results, it is shown that Int(Z,M) is not Noetherian module over IntM (Z) ∩ Int(Z), where M is a finitely generated Z-module.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).