动态分位数模型的一致性规范测试

IF 1.9 3区 经济学 Q2 ECONOMICS
Peter Horvath, Jia Li, Z. Liao, Andrew J. Patton
{"title":"动态分位数模型的一致性规范测试","authors":"Peter Horvath, Jia Li, Z. Liao, Andrew J. Patton","doi":"10.3982/qe1727","DOIUrl":null,"url":null,"abstract":"Correct specification of a conditional quantile model implies that a particular conditional moment is equal to zero. We nonparametrically estimate the conditional moment function via series regression and test whether it is identically zero using uniform functional inference. Our approach is theoretically justified via a strong Gaussian approximation for statistics of growing dimensions in a general time series setting. We propose a novel bootstrap method in this nonstandard context and show that it significantly outperforms the benchmark asymptotic approximation in finite samples, especially for tail quantiles such as Value‐at‐Risk (VaR). We use the proposed new test to study the VaR and CoVaR (Adrian and Brunnermeier (2016)) of a collection of US financial institutions.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A consistent specification test for dynamic quantile models\",\"authors\":\"Peter Horvath, Jia Li, Z. Liao, Andrew J. Patton\",\"doi\":\"10.3982/qe1727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correct specification of a conditional quantile model implies that a particular conditional moment is equal to zero. We nonparametrically estimate the conditional moment function via series regression and test whether it is identically zero using uniform functional inference. Our approach is theoretically justified via a strong Gaussian approximation for statistics of growing dimensions in a general time series setting. We propose a novel bootstrap method in this nonstandard context and show that it significantly outperforms the benchmark asymptotic approximation in finite samples, especially for tail quantiles such as Value‐at‐Risk (VaR). We use the proposed new test to study the VaR and CoVaR (Adrian and Brunnermeier (2016)) of a collection of US financial institutions.\",\"PeriodicalId\":46811,\"journal\":{\"name\":\"Quantitative Economics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.3982/qe1727\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3982/qe1727","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

摘要

条件分位数模型的正确规范意味着特定的条件矩等于零。通过序列回归对条件矩函数进行非参数估计,并利用一致泛函推理检验其是否为同零。我们的方法在理论上是合理的,通过对一般时间序列设置中增长维度的统计的强高斯近似。在这种非标准环境下,我们提出了一种新的自举方法,并表明它在有限样本中显著优于基准渐近逼近,特别是对于尾部分位数,如Value - at - Risk (VaR)。我们使用提出的新测试来研究一组美国金融机构的VaR和CoVaR (Adrian and Brunnermeier(2016))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A consistent specification test for dynamic quantile models
Correct specification of a conditional quantile model implies that a particular conditional moment is equal to zero. We nonparametrically estimate the conditional moment function via series regression and test whether it is identically zero using uniform functional inference. Our approach is theoretically justified via a strong Gaussian approximation for statistics of growing dimensions in a general time series setting. We propose a novel bootstrap method in this nonstandard context and show that it significantly outperforms the benchmark asymptotic approximation in finite samples, especially for tail quantiles such as Value‐at‐Risk (VaR). We use the proposed new test to study the VaR and CoVaR (Adrian and Brunnermeier (2016)) of a collection of US financial institutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信