奇异势非齐次非线性schrÖdinger方程的轨道稳定性

IF 0.5 4区 数学 Q3 MATHEMATICS
Yonggeun Cho, Misung Lee
{"title":"奇异势非齐次非线性schrÖdinger方程的轨道稳定性","authors":"Yonggeun Cho, Misung Lee","doi":"10.4134/BKMS.B190029","DOIUrl":null,"url":null,"abstract":"We show the existence of ground state and orbital stability of standing waves of nonlinear Schrödinger equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in H1. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"56 1","pages":"1601-1615"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL\",\"authors\":\"Yonggeun Cho, Misung Lee\",\"doi\":\"10.4134/BKMS.B190029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the existence of ground state and orbital stability of standing waves of nonlinear Schrödinger equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in H1. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"56 1\",\"pages\":\"1601-1615\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B190029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B190029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们证明了具有奇异线性势和本质上是质量亚临界功率型非线性的非线性Schrödinger方程的基态和驻波轨道稳定性的存在性。为此,我们建立了H1中基态的存在性。我们不假设对称或单调。我们还考虑了能量次临界方程的Strichartz解的局部和全局适定性。在三维空间中,我们略微提高了[5,12]中的非齐次系数的取值范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL
We show the existence of ground state and orbital stability of standing waves of nonlinear Schrödinger equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in H1. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信