{"title":"关于射影流形实结构的有限性","authors":"Jin Hong Kim","doi":"10.4134/BKMS.B190084","DOIUrl":null,"url":null,"abstract":"Recently, Lesieutre constructed a 6-dimensional projective variety X over any field of characteristic zero whose automorphism group Aut(X) is discrete but not finitely generated. As an application, he also showed that X is an example of a projective variety with infinitely many non-isomorphic real structures. On the other hand, there are also several finiteness results of real structures of projective varieties. The aim of this short paper is to give a sufficient condition for the finiteness of real structures on a projective manifold in terms of the structure of the automorphism group. To be more precise, in this paper we show that, when X is a projective manifold of any dimension≥ 2, if Aut(X) does not contain a subgroup isomorphic to the non-abelian free group Z ∗ Z, then there are only finitely many real structures on X, up to R-isomorphisms.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"57 1","pages":"109-115"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ON THE FINITENESS OF REAL STRUCTURES OF PROJECTIVE MANIFOLDS\",\"authors\":\"Jin Hong Kim\",\"doi\":\"10.4134/BKMS.B190084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Lesieutre constructed a 6-dimensional projective variety X over any field of characteristic zero whose automorphism group Aut(X) is discrete but not finitely generated. As an application, he also showed that X is an example of a projective variety with infinitely many non-isomorphic real structures. On the other hand, there are also several finiteness results of real structures of projective varieties. The aim of this short paper is to give a sufficient condition for the finiteness of real structures on a projective manifold in terms of the structure of the automorphism group. To be more precise, in this paper we show that, when X is a projective manifold of any dimension≥ 2, if Aut(X) does not contain a subgroup isomorphic to the non-abelian free group Z ∗ Z, then there are only finitely many real structures on X, up to R-isomorphisms.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"109-115\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B190084\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B190084","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON THE FINITENESS OF REAL STRUCTURES OF PROJECTIVE MANIFOLDS
Recently, Lesieutre constructed a 6-dimensional projective variety X over any field of characteristic zero whose automorphism group Aut(X) is discrete but not finitely generated. As an application, he also showed that X is an example of a projective variety with infinitely many non-isomorphic real structures. On the other hand, there are also several finiteness results of real structures of projective varieties. The aim of this short paper is to give a sufficient condition for the finiteness of real structures on a projective manifold in terms of the structure of the automorphism group. To be more precise, in this paper we show that, when X is a projective manifold of any dimension≥ 2, if Aut(X) does not contain a subgroup isomorphic to the non-abelian free group Z ∗ Z, then there are only finitely many real structures on X, up to R-isomorphisms.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).