关于射影流形实结构的有限性

IF 0.6 4区 数学 Q3 MATHEMATICS
Jin Hong Kim
{"title":"关于射影流形实结构的有限性","authors":"Jin Hong Kim","doi":"10.4134/BKMS.B190084","DOIUrl":null,"url":null,"abstract":"Recently, Lesieutre constructed a 6-dimensional projective variety X over any field of characteristic zero whose automorphism group Aut(X) is discrete but not finitely generated. As an application, he also showed that X is an example of a projective variety with infinitely many non-isomorphic real structures. On the other hand, there are also several finiteness results of real structures of projective varieties. The aim of this short paper is to give a sufficient condition for the finiteness of real structures on a projective manifold in terms of the structure of the automorphism group. To be more precise, in this paper we show that, when X is a projective manifold of any dimension≥ 2, if Aut(X) does not contain a subgroup isomorphic to the non-abelian free group Z ∗ Z, then there are only finitely many real structures on X, up to R-isomorphisms.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"57 1","pages":"109-115"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ON THE FINITENESS OF REAL STRUCTURES OF PROJECTIVE MANIFOLDS\",\"authors\":\"Jin Hong Kim\",\"doi\":\"10.4134/BKMS.B190084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Lesieutre constructed a 6-dimensional projective variety X over any field of characteristic zero whose automorphism group Aut(X) is discrete but not finitely generated. As an application, he also showed that X is an example of a projective variety with infinitely many non-isomorphic real structures. On the other hand, there are also several finiteness results of real structures of projective varieties. The aim of this short paper is to give a sufficient condition for the finiteness of real structures on a projective manifold in terms of the structure of the automorphism group. To be more precise, in this paper we show that, when X is a projective manifold of any dimension≥ 2, if Aut(X) does not contain a subgroup isomorphic to the non-abelian free group Z ∗ Z, then there are only finitely many real structures on X, up to R-isomorphisms.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"109-115\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B190084\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B190084","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

最近,Lesieutre在任意特征为零的域上构造了一个6维射影变量X,其自同构群Aut(X)是离散的但不是有限生成的。作为应用,他还证明了X是具有无穷多个非同构实结构的射影变的一个例子。另一方面,也有一些射影变异实结构的有限性结果。本文的目的是利用自同构群的结构给出射影流形上实结构有限的一个充分条件。更精确地说,在本文中我们证明,当X是≥2维的投影流形时,如果Aut(X)不包含与非阿贝自由群Z * Z同构的子群,则X上只有有限多个实结构,直到r同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE FINITENESS OF REAL STRUCTURES OF PROJECTIVE MANIFOLDS
Recently, Lesieutre constructed a 6-dimensional projective variety X over any field of characteristic zero whose automorphism group Aut(X) is discrete but not finitely generated. As an application, he also showed that X is an example of a projective variety with infinitely many non-isomorphic real structures. On the other hand, there are also several finiteness results of real structures of projective varieties. The aim of this short paper is to give a sufficient condition for the finiteness of real structures on a projective manifold in terms of the structure of the automorphism group. To be more precise, in this paper we show that, when X is a projective manifold of any dimension≥ 2, if Aut(X) does not contain a subgroup isomorphic to the non-abelian free group Z ∗ Z, then there are only finitely many real structures on X, up to R-isomorphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信