{"title":"具有几乎全挠度的六次平面曲线的双盖","authors":"S. Kim, J. Komeda","doi":"10.4134/BKMS.B180915","DOIUrl":null,"url":null,"abstract":"In this paper, we study plane curves of degree 6 with points whose multiplicities of the tangents are 5. We determine all the Weierstrass semigroups of ramification points on double covers of the plane curves when the genera of the covering curves are greater than 29 and the ramification points are on the points with multiplicity 5 of the tan-","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"56 1","pages":"1159-1186"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DOUBLE COVERS OF PLANE CURVES OF DEGREE SIX WITH ALMOST TOTAL FLEXES\",\"authors\":\"S. Kim, J. Komeda\",\"doi\":\"10.4134/BKMS.B180915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study plane curves of degree 6 with points whose multiplicities of the tangents are 5. We determine all the Weierstrass semigroups of ramification points on double covers of the plane curves when the genera of the covering curves are greater than 29 and the ramification points are on the points with multiplicity 5 of the tan-\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"56 1\",\"pages\":\"1159-1186\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B180915\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B180915","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
DOUBLE COVERS OF PLANE CURVES OF DEGREE SIX WITH ALMOST TOTAL FLEXES
In this paper, we study plane curves of degree 6 with points whose multiplicities of the tangents are 5. We determine all the Weierstrass semigroups of ramification points on double covers of the plane curves when the genera of the covering curves are greater than 29 and the ramification points are on the points with multiplicity 5 of the tan-
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).