{"title":"分数阶nabla差分方程系统的Mittag-leffler稳定性","authors":"P. Eloe, J. Jonnalagadda","doi":"10.4134/BKMS.B180749","DOIUrl":null,"url":null,"abstract":"Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"56 1","pages":"977-992"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS\",\"authors\":\"P. Eloe, J. Jonnalagadda\",\"doi\":\"10.4134/BKMS.B180749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"56 1\",\"pages\":\"977-992\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B180749\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B180749","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).