算子-代数上保持Jordan和-jordan三重积的映射

IF 0.6 4区 数学 Q3 MATHEMATICS
V. Darvish, Mojtaba Nouri, M. Razeghi, A. Taghavi
{"title":"算子-代数上保持Jordan和-jordan三重积的映射","authors":"V. Darvish, Mojtaba Nouri, M. Razeghi, A. Taghavi","doi":"10.4134/BKMS.B180327","DOIUrl":null,"url":null,"abstract":"Let A and B be two operator ∗-rings such that A is prime. In this paper, we show that if the map Φ : A → B is bijective and preserves Jordan or ∗-Jordan triple product, then it is additive. Moreover, if Φ preserves Jordan triple product, we prove the multiplicativity or antimultiplicativity of Φ. Finally, we show that if A and B are two prime operator ∗-algebras, Ψ : A → B is bijective and preserves ∗-Jordan triple product, then Ψ is a C-linear or conjugate C-linear ∗-isomorphism.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"56 1","pages":"451-459"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MAPS PRESERVING JORDAN AND ⁎-JORDAN TRIPLE PRODUCT ON OPERATOR ⁎-ALGEBRAS\",\"authors\":\"V. Darvish, Mojtaba Nouri, M. Razeghi, A. Taghavi\",\"doi\":\"10.4134/BKMS.B180327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A and B be two operator ∗-rings such that A is prime. In this paper, we show that if the map Φ : A → B is bijective and preserves Jordan or ∗-Jordan triple product, then it is additive. Moreover, if Φ preserves Jordan triple product, we prove the multiplicativity or antimultiplicativity of Φ. Finally, we show that if A and B are two prime operator ∗-algebras, Ψ : A → B is bijective and preserves ∗-Jordan triple product, then Ψ is a C-linear or conjugate C-linear ∗-isomorphism.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"56 1\",\"pages\":\"451-459\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B180327\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B180327","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设A和B是两个算子*环,使得A是素数。在本文中,我们证明了如果映射Φ: A→B是双射且保持Jordan或* -Jordan三重积,则它是可加的。此外,如果Φ保持约当三重积,我们证明了Φ的可乘性或反可乘性。最后,我们证明了如果A和B是两个素数算子* -代数,Ψ: A→B是双射且保持* -Jordan三重积,则Ψ是一个c -线性或共轭c -线性* -同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAPS PRESERVING JORDAN AND ⁎-JORDAN TRIPLE PRODUCT ON OPERATOR ⁎-ALGEBRAS
Let A and B be two operator ∗-rings such that A is prime. In this paper, we show that if the map Φ : A → B is bijective and preserves Jordan or ∗-Jordan triple product, then it is additive. Moreover, if Φ preserves Jordan triple product, we prove the multiplicativity or antimultiplicativity of Φ. Finally, we show that if A and B are two prime operator ∗-algebras, Ψ : A → B is bijective and preserves ∗-Jordan triple product, then Ψ is a C-linear or conjugate C-linear ∗-isomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信