改进最小距离的量子码

IF 0.6 4区 数学 Q3 MATHEMATICS
E. Kolotoğlu, Mustafa Sarı
{"title":"改进最小距离的量子码","authors":"E. Kolotoğlu, Mustafa Sarı","doi":"10.4134/bkms.b180295","DOIUrl":null,"url":null,"abstract":"The methods for constructing quantum codes is not always sufficient by itself. Also, the constructed quantum codes as in the classical coding theory have to enjoy a quality of its parameters that play a very important role in recovering data efficiently. In a very recent study quantum construction and examples of quantum codes over a finite field of order q are presented by La Garcia in [14]. Being inspired by La Garcia’s the paper, here we extend the results over a finite field with q2 elements by studying necessary and sufficient conditions for constructions quantum codes over this field. We determine a criteria for the existence of q2-cyclotomic cosets containing at least three elements and present a construction method for quantum maximum-distance separable (MDS) codes. Moreover, we derive a way to construct quantum codes and show that this construction method leads to quantum codes with better parameters than the ones in [14].","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"35 1","pages":"609-619"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QUANTUM CODES WITH IMPROVED MINIMUM DISTANCE\",\"authors\":\"E. Kolotoğlu, Mustafa Sarı\",\"doi\":\"10.4134/bkms.b180295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methods for constructing quantum codes is not always sufficient by itself. Also, the constructed quantum codes as in the classical coding theory have to enjoy a quality of its parameters that play a very important role in recovering data efficiently. In a very recent study quantum construction and examples of quantum codes over a finite field of order q are presented by La Garcia in [14]. Being inspired by La Garcia’s the paper, here we extend the results over a finite field with q2 elements by studying necessary and sufficient conditions for constructions quantum codes over this field. We determine a criteria for the existence of q2-cyclotomic cosets containing at least three elements and present a construction method for quantum maximum-distance separable (MDS) codes. Moreover, we derive a way to construct quantum codes and show that this construction method leads to quantum codes with better parameters than the ones in [14].\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"35 1\",\"pages\":\"609-619\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/bkms.b180295\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/bkms.b180295","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

构造量子密码的方法本身并不总是足够的。此外,在经典编码理论中构造的量子码必须具有一定的参数质量,这些参数在有效地恢复数据方面起着非常重要的作用。在最近的一项研究中,La Garcia在b[14]中给出了量子结构和量子码在有限q阶域上的例子。受La Garcia论文的启发,本文通过研究在该域中构造量子码的充分必要条件,将结果推广到具有q2元的有限域。我们确定了包含至少三个元素的q2-环形共集存在的准则,并提出了量子最大距离可分离码(MDS)的构造方法。此外,我们还推导了一种构造量子码的方法,并证明了这种构造方法可以得到比[14]中的量子码具有更好参数的量子码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QUANTUM CODES WITH IMPROVED MINIMUM DISTANCE
The methods for constructing quantum codes is not always sufficient by itself. Also, the constructed quantum codes as in the classical coding theory have to enjoy a quality of its parameters that play a very important role in recovering data efficiently. In a very recent study quantum construction and examples of quantum codes over a finite field of order q are presented by La Garcia in [14]. Being inspired by La Garcia’s the paper, here we extend the results over a finite field with q2 elements by studying necessary and sufficient conditions for constructions quantum codes over this field. We determine a criteria for the existence of q2-cyclotomic cosets containing at least three elements and present a construction method for quantum maximum-distance separable (MDS) codes. Moreover, we derive a way to construct quantum codes and show that this construction method leads to quantum codes with better parameters than the ones in [14].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信