{"title":"关于周期性和移位的共享1cm + 1im的亚纯函数","authors":"Xiaoshan Cai, Jun-Fan Chen","doi":"10.4134/BKMS.B180076","DOIUrl":null,"url":null,"abstract":". The aim of this paper is to investigate the problems of meromorphic functions sharing values concerning periodicities and shifts. In this paper we prove the following result: Let f ( z ) and g ( z ) be two nonconstant entire functions, let c ∈ C \\{ 0 } , and let a 1 , a 2 be two distinct finite complex numbers. Suppose that µ ( f ) (cid:54) = 1, ρ 2 ( f ) < 1, and f ( z ) = f ( z + c ) for all z ∈ C . If f ( z ) and g ( z ) share a 1 CM, a 2 IM, then f ( z ) ≡ g ( z ). Moreover, examples are given to show that all the conditions are neces-sary.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"56 1","pages":"45-56"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MEROMORPHIC FUNCTIONS SHARING 1CM+1IM CONCERNING PERIODICITIES AND SHIFTS\",\"authors\":\"Xiaoshan Cai, Jun-Fan Chen\",\"doi\":\"10.4134/BKMS.B180076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The aim of this paper is to investigate the problems of meromorphic functions sharing values concerning periodicities and shifts. In this paper we prove the following result: Let f ( z ) and g ( z ) be two nonconstant entire functions, let c ∈ C \\\\{ 0 } , and let a 1 , a 2 be two distinct finite complex numbers. Suppose that µ ( f ) (cid:54) = 1, ρ 2 ( f ) < 1, and f ( z ) = f ( z + c ) for all z ∈ C . If f ( z ) and g ( z ) share a 1 CM, a 2 IM, then f ( z ) ≡ g ( z ). Moreover, examples are given to show that all the conditions are neces-sary.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"56 1\",\"pages\":\"45-56\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B180076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B180076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
. 本文的目的是研究关于周期和位移的亚纯函数共享值问题。本文证明了以下结果:设f (z)和g (z)是两个非常整函数,设c∈c \{0},设a 1, a 2是两个不同的有限复数。假设对于所有z∈c,µ(f) (cid:54) = 1, ρ 2 (f) < 1, f (z) = f (z + c)。若f (z)和g (z)共用1cm, 2im,则f (z)≡g (z)。并举例说明了所有条件都是必要的。
MEROMORPHIC FUNCTIONS SHARING 1CM+1IM CONCERNING PERIODICITIES AND SHIFTS
. The aim of this paper is to investigate the problems of meromorphic functions sharing values concerning periodicities and shifts. In this paper we prove the following result: Let f ( z ) and g ( z ) be two nonconstant entire functions, let c ∈ C \{ 0 } , and let a 1 , a 2 be two distinct finite complex numbers. Suppose that µ ( f ) (cid:54) = 1, ρ 2 ( f ) < 1, and f ( z ) = f ( z + c ) for all z ∈ C . If f ( z ) and g ( z ) share a 1 CM, a 2 IM, then f ( z ) ≡ g ( z ). Moreover, examples are given to show that all the conditions are neces-sary.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).