在dedekind和的分母上

IF 0.6 4区 数学 Q3 MATHEMATICS
S. Louboutin
{"title":"在dedekind和的分母上","authors":"S. Louboutin","doi":"10.4134/BKMS.B180043","DOIUrl":null,"url":null,"abstract":"It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)’s over all the c’s in a subgroup H of order n > 1 in the multiplicative group (Z/dZ)∗. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p−1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d’s. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"56 1","pages":"815-827"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON THE DENOMINATOR OF DEDEKIND SUMS\",\"authors\":\"S. Louboutin\",\"doi\":\"10.4134/BKMS.B180043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)’s over all the c’s in a subgroup H of order n > 1 in the multiplicative group (Z/dZ)∗. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p−1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d’s. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"56 1\",\"pages\":\"815-827\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B180043\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B180043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,Dedekind和式的分母s(c, d)除以2 gcd(d, 3)d,并且不存在独立于c的更小的分母。相反,这里我们证明在S(H, d)中我们通常得到一个更小的分母,S(c, d)除以乘群(Z/dZ) *中n > 1阶子群H中所有c的和。首先,我们证明了对于p bbb3a素数,和2S(H, p)是与(p−1)/2具有相同奇偶性的有理数。将这一结果应用于本源导体虚阿贝尔数场的相对类数上界。最后,我们给出了非必然素数d的S(H, d)的分母的一般结果。我们证明了它的分母是2d gcd(d, 3)的某个显式因子的一个约数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE DENOMINATOR OF DEDEKIND SUMS
It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)’s over all the c’s in a subgroup H of order n > 1 in the multiplicative group (Z/dZ)∗. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p−1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d’s. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信