关于广义krull幂级数环

IF 0.6 4区 数学 Q3 MATHEMATICS
T. Le, T. Phan
{"title":"关于广义krull幂级数环","authors":"T. Le, T. Phan","doi":"10.4134/BKMS.b170233","DOIUrl":null,"url":null,"abstract":"Let R be an integral domain. We prove that the power series ring R[[X]] is a Krull domain if and only if R[[X]] is a generalized Krull domain and t-dimR ≤ 1, which improves a well-known result of Paran and Temkin. As a consequence we show that one of the following statements holds: (1) the concepts “Krull domain” and “generalized Krull domain” are the same in power series rings, (2) there exists a non-t-SFT domain R with t-dimR > 1 such that t-dimR[[X]] = 1.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"55 1","pages":"1007-1012"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON GENERALIZED KRULL POWER SERIES RINGS\",\"authors\":\"T. Le, T. Phan\",\"doi\":\"10.4134/BKMS.b170233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be an integral domain. We prove that the power series ring R[[X]] is a Krull domain if and only if R[[X]] is a generalized Krull domain and t-dimR ≤ 1, which improves a well-known result of Paran and Temkin. As a consequence we show that one of the following statements holds: (1) the concepts “Krull domain” and “generalized Krull domain” are the same in power series rings, (2) there exists a non-t-SFT domain R with t-dimR > 1 such that t-dimR[[X]] = 1.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"55 1\",\"pages\":\"1007-1012\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.b170233\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.b170233","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个积分域。证明幂级数环R[[X]]是一个Krull定域当且仅当R[[X]]是一个广义Krull定域且t-dimR≤1,改进了Paran和Temkin的一个著名结果。因此,我们证明了以下一个命题成立:(1)“Krull域”和“广义Krull域”在幂级数环上是相同的概念,(2)存在一个t-dimR > 1的非t- sft域R,使得t-dimR[[X]] = 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON GENERALIZED KRULL POWER SERIES RINGS
Let R be an integral domain. We prove that the power series ring R[[X]] is a Krull domain if and only if R[[X]] is a generalized Krull domain and t-dimR ≤ 1, which improves a well-known result of Paran and Temkin. As a consequence we show that one of the following statements holds: (1) the concepts “Krull domain” and “generalized Krull domain” are the same in power series rings, (2) there exists a non-t-SFT domain R with t-dimR > 1 such that t-dimR[[X]] = 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信