{"title":"改进pocklington和padrÓ-sÁez立方根算法","authors":"Gook Hwa Cho, Hyang-Sook Lee","doi":"10.4134/BKMS.B160769","DOIUrl":null,"url":null,"abstract":"In this paper, we present a cube root algorithm using a recurrence relation. Additionally, we compare the implementations of the Pocklington and Padró-Sáez algorithm with the Adleman-Manders-Miller algorithm. With the recurrence relations, we improve the Pocklington and Padró-Sáez algorithm by using a smaller base for exponentiation. Our method can reduce the average number of Fq multiplications.","PeriodicalId":55301,"journal":{"name":"Bulletin of the Korean Mathematical Society","volume":"7 1","pages":"277-283"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPROVING THE POCKLINGTON AND PADRÓ-SÁEZ CUBE ROOT ALGORITHM\",\"authors\":\"Gook Hwa Cho, Hyang-Sook Lee\",\"doi\":\"10.4134/BKMS.B160769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a cube root algorithm using a recurrence relation. Additionally, we compare the implementations of the Pocklington and Padró-Sáez algorithm with the Adleman-Manders-Miller algorithm. With the recurrence relations, we improve the Pocklington and Padró-Sáez algorithm by using a smaller base for exponentiation. Our method can reduce the average number of Fq multiplications.\",\"PeriodicalId\":55301,\"journal\":{\"name\":\"Bulletin of the Korean Mathematical Society\",\"volume\":\"7 1\",\"pages\":\"277-283\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/BKMS.B160769\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/BKMS.B160769","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
IMPROVING THE POCKLINGTON AND PADRÓ-SÁEZ CUBE ROOT ALGORITHM
In this paper, we present a cube root algorithm using a recurrence relation. Additionally, we compare the implementations of the Pocklington and Padró-Sáez algorithm with the Adleman-Manders-Miller algorithm. With the recurrence relations, we improve the Pocklington and Padró-Sáez algorithm by using a smaller base for exponentiation. Our method can reduce the average number of Fq multiplications.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).