监测疫苗蛋白糖基化:分析和最新进展

J. Cipollo
{"title":"监测疫苗蛋白糖基化:分析和最新进展","authors":"J. Cipollo","doi":"10.4155/PBP.15.13","DOIUrl":null,"url":null,"abstract":"In recent years, it has become increasingly clear that glycosylation of key pathogen glycoprotein antigens can significantly affect antigenic properties. For example, pathogens, such as human immunodeficiency virus and influenza, can develop a ‘glycoshield’ over key antigens as they passage through host populations. In addition to shielding of antigenic sites key changes in glycosylation have been shown to modify host innate immune responses and both of these phenomena can potentially impact vaccine performance. A better understanding of glycosylation properties of vaccine antigens may better guide development of these products and management of their production processes. Due to the complexity of oligosaccharides, the analysis of these glycosylation states has been difficult and time consuming. With the advent of cutting edge mass spectrometry based techniques many of the barriers to glycan and glycoprotein analysis have been lowered. Combined with traditional techniques such as high field NMR, GC/MS, CE...","PeriodicalId":90285,"journal":{"name":"Pharmaceutical bioprocessing","volume":"59 1","pages":"323-340"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4155/PBP.15.13","citationCount":"0","resultStr":"{\"title\":\"Monitoring vaccine protein glycosylation: analytics and recent developments\",\"authors\":\"J. Cipollo\",\"doi\":\"10.4155/PBP.15.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, it has become increasingly clear that glycosylation of key pathogen glycoprotein antigens can significantly affect antigenic properties. For example, pathogens, such as human immunodeficiency virus and influenza, can develop a ‘glycoshield’ over key antigens as they passage through host populations. In addition to shielding of antigenic sites key changes in glycosylation have been shown to modify host innate immune responses and both of these phenomena can potentially impact vaccine performance. A better understanding of glycosylation properties of vaccine antigens may better guide development of these products and management of their production processes. Due to the complexity of oligosaccharides, the analysis of these glycosylation states has been difficult and time consuming. With the advent of cutting edge mass spectrometry based techniques many of the barriers to glycan and glycoprotein analysis have been lowered. Combined with traditional techniques such as high field NMR, GC/MS, CE...\",\"PeriodicalId\":90285,\"journal\":{\"name\":\"Pharmaceutical bioprocessing\",\"volume\":\"59 1\",\"pages\":\"323-340\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4155/PBP.15.13\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical bioprocessing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4155/PBP.15.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical bioprocessing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/PBP.15.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们越来越清楚,关键病原体糖蛋白抗原的糖基化可以显著影响抗原性质。例如,人类免疫缺陷病毒和流感等病原体在通过宿主群体时,可以在关键抗原上形成一种“糖盾”。除了屏蔽抗原位点外,糖基化的关键变化已被证明可以改变宿主先天免疫反应,这两种现象都可能影响疫苗的性能。更好地了解疫苗抗原的糖基化特性可以更好地指导这些产品的开发和生产过程的管理。由于低聚糖的复杂性,分析这些糖基化状态一直是困难和耗时的。随着尖端质谱技术的出现,许多聚糖和糖蛋白分析的障碍已经降低。结合传统技术如高场核磁共振、GC/MS、CE…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring vaccine protein glycosylation: analytics and recent developments
In recent years, it has become increasingly clear that glycosylation of key pathogen glycoprotein antigens can significantly affect antigenic properties. For example, pathogens, such as human immunodeficiency virus and influenza, can develop a ‘glycoshield’ over key antigens as they passage through host populations. In addition to shielding of antigenic sites key changes in glycosylation have been shown to modify host innate immune responses and both of these phenomena can potentially impact vaccine performance. A better understanding of glycosylation properties of vaccine antigens may better guide development of these products and management of their production processes. Due to the complexity of oligosaccharides, the analysis of these glycosylation states has been difficult and time consuming. With the advent of cutting edge mass spectrometry based techniques many of the barriers to glycan and glycoprotein analysis have been lowered. Combined with traditional techniques such as high field NMR, GC/MS, CE...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信