基于序列特征的大肠杆菌可溶性外源蛋白表达水平预测及其在生物制药工艺开发中的潜力

Xiaofeng Dai, Wenwen Guo, Quan Long, Yankun Yang, L. Harvey, B. McNeil, Zhonghu Bai
{"title":"基于序列特征的大肠杆菌可溶性外源蛋白表达水平预测及其在生物制药工艺开发中的潜力","authors":"Xiaofeng Dai, Wenwen Guo, Quan Long, Yankun Yang, L. Harvey, B. McNeil, Zhonghu Bai","doi":"10.4155/PBP.14.23","DOIUrl":null,"url":null,"abstract":"Prediction of soluble protein expression levels in Escherichia coli based on the nature of protein itself remains a challenge for bioprocess development (BD). This review will critically discuss the current efforts and achievements that employ computational approaches to develop prediction models for soluble protein expression in E. coli. The contrast between the remarkable progresses made on the predictive models achieved by bioinformatics and their relatively infrequent application in BD will be explained. The effects of process-relevant variables at four different levels on the expression of heterologous proteins, for example, gene, vector, host cell and cultivation process, and also a critical comparison of several established bioinformatics tools for predicting expression levels will be presented. The potential utility of this emergent technology to increase the efficiency of BD strategies and thereby to reduce the cost of establishing a process for soluble protein expression are critically examined.","PeriodicalId":90285,"journal":{"name":"Pharmaceutical bioprocessing","volume":"2 1","pages":"253-266"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4155/PBP.14.23","citationCount":"1","resultStr":"{\"title\":\"Prediction of soluble heterologous protein expression levels in Escherichia coli from sequence-based features and its potential in biopharmaceutical process development\",\"authors\":\"Xiaofeng Dai, Wenwen Guo, Quan Long, Yankun Yang, L. Harvey, B. McNeil, Zhonghu Bai\",\"doi\":\"10.4155/PBP.14.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of soluble protein expression levels in Escherichia coli based on the nature of protein itself remains a challenge for bioprocess development (BD). This review will critically discuss the current efforts and achievements that employ computational approaches to develop prediction models for soluble protein expression in E. coli. The contrast between the remarkable progresses made on the predictive models achieved by bioinformatics and their relatively infrequent application in BD will be explained. The effects of process-relevant variables at four different levels on the expression of heterologous proteins, for example, gene, vector, host cell and cultivation process, and also a critical comparison of several established bioinformatics tools for predicting expression levels will be presented. The potential utility of this emergent technology to increase the efficiency of BD strategies and thereby to reduce the cost of establishing a process for soluble protein expression are critically examined.\",\"PeriodicalId\":90285,\"journal\":{\"name\":\"Pharmaceutical bioprocessing\",\"volume\":\"2 1\",\"pages\":\"253-266\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4155/PBP.14.23\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical bioprocessing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4155/PBP.14.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical bioprocessing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/PBP.14.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据蛋白本身的性质预测大肠杆菌中可溶性蛋白的表达水平仍然是生物过程开发(BD)的一个挑战。这篇综述将批判性地讨论目前使用计算方法开发大肠杆菌可溶性蛋白表达预测模型的努力和成就。将解释生物信息学在预测模型方面取得的显著进展与它们在BD中相对较少的应用之间的对比。将介绍四个不同水平的过程相关变量对异源蛋白表达的影响,例如基因、载体、宿主细胞和培养过程,以及几种已建立的预测表达水平的生物信息学工具的关键比较。这项新兴技术的潜在效用是提高BD策略的效率,从而降低建立可溶性蛋白表达过程的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of soluble heterologous protein expression levels in Escherichia coli from sequence-based features and its potential in biopharmaceutical process development
Prediction of soluble protein expression levels in Escherichia coli based on the nature of protein itself remains a challenge for bioprocess development (BD). This review will critically discuss the current efforts and achievements that employ computational approaches to develop prediction models for soluble protein expression in E. coli. The contrast between the remarkable progresses made on the predictive models achieved by bioinformatics and their relatively infrequent application in BD will be explained. The effects of process-relevant variables at four different levels on the expression of heterologous proteins, for example, gene, vector, host cell and cultivation process, and also a critical comparison of several established bioinformatics tools for predicting expression levels will be presented. The potential utility of this emergent technology to increase the efficiency of BD strategies and thereby to reduce the cost of establishing a process for soluble protein expression are critically examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信