基于HadGEM2-AO的西北太平洋和东亚边缘海海温模拟分析

Q4 Engineering
Haejin Kim, Cheolsoo Kim, Hong‐Ryeol Shin
{"title":"基于HadGEM2-AO的西北太平洋和东亚边缘海海温模拟分析","authors":"Haejin Kim, Cheolsoo Kim, Hong‐Ryeol Shin","doi":"10.4217/OPR.2016.38.2.089","DOIUrl":null,"url":null,"abstract":"In this study, we evaluated the model performance with respect to Sea Surface Temperature (SST) and Net Heat Flux (NHF) by considering the characteristics of seasonal temperature variation and contributing factors and by analyzing heat budget terms in the Northwestern Pacific and East Asian Marginal Seas (110˚E−160˚E, 15˚N−60˚N) using the HadGEM2-AO historical run. Annual mean SST of the HadGEM2-AO is about 0.065oC higher than observations (EN3_v2a) from 1950 to 2000. Since 1960, the model has simulated well the long-term variation of SST and the increasing rate of SST in the model (0.014℃/year) is comparable with observations (0.013℃/year). Heat loss from the ocean to the atmosphere was simulated slightly higher in the HadGEM2-AO than that in the reanalysis data on the East Asian Marginal Seas and the Kuroshio region. We investigated the causes of temperature variation by calculating the heat budget equation in the two representative regions. In the central part of the Kuroshio axis (125˚E−130˚E, 25˚N−30˚N: Region A), both heat loss in the upper mixed layer by surface heat flux and vertical heat advection mainly cause the decrease of heat storage in autumn and winter. Release of latent heat flux through the heat convergence brought about by the Kuroshio contributes to the large surface net heat flux. Positive heat storage rate is mainly determined by horizontal heat advection from March to April and surface net heat flux from May to July. In the central part of the subtropical gyre (155˚E−160˚E, 22˚N−27˚N: Region B), unlike Region A, vertical heat advection predominantly causes the decrease of heat storage in autumn and winter. In spring and summer, surface heat flux contributes to the increase of heat storage in Region B and the period is two times longer than the period for Region A. In this season, shoaling of the mixed layer depth plays an important role in the increase of SST.","PeriodicalId":35665,"journal":{"name":"Ocean and Polar Research","volume":"38 1","pages":"89-102"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Sea Surface Temperature Simulation in the Northwestern Pacific and the East Asian Marginal Seas using HadGEM2-AO\",\"authors\":\"Haejin Kim, Cheolsoo Kim, Hong‐Ryeol Shin\",\"doi\":\"10.4217/OPR.2016.38.2.089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we evaluated the model performance with respect to Sea Surface Temperature (SST) and Net Heat Flux (NHF) by considering the characteristics of seasonal temperature variation and contributing factors and by analyzing heat budget terms in the Northwestern Pacific and East Asian Marginal Seas (110˚E−160˚E, 15˚N−60˚N) using the HadGEM2-AO historical run. Annual mean SST of the HadGEM2-AO is about 0.065oC higher than observations (EN3_v2a) from 1950 to 2000. Since 1960, the model has simulated well the long-term variation of SST and the increasing rate of SST in the model (0.014℃/year) is comparable with observations (0.013℃/year). Heat loss from the ocean to the atmosphere was simulated slightly higher in the HadGEM2-AO than that in the reanalysis data on the East Asian Marginal Seas and the Kuroshio region. We investigated the causes of temperature variation by calculating the heat budget equation in the two representative regions. In the central part of the Kuroshio axis (125˚E−130˚E, 25˚N−30˚N: Region A), both heat loss in the upper mixed layer by surface heat flux and vertical heat advection mainly cause the decrease of heat storage in autumn and winter. Release of latent heat flux through the heat convergence brought about by the Kuroshio contributes to the large surface net heat flux. Positive heat storage rate is mainly determined by horizontal heat advection from March to April and surface net heat flux from May to July. In the central part of the subtropical gyre (155˚E−160˚E, 22˚N−27˚N: Region B), unlike Region A, vertical heat advection predominantly causes the decrease of heat storage in autumn and winter. In spring and summer, surface heat flux contributes to the increase of heat storage in Region B and the period is two times longer than the period for Region A. In this season, shoaling of the mixed layer depth plays an important role in the increase of SST.\",\"PeriodicalId\":35665,\"journal\":{\"name\":\"Ocean and Polar Research\",\"volume\":\"38 1\",\"pages\":\"89-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean and Polar Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4217/OPR.2016.38.2.089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean and Polar Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4217/OPR.2016.38.2.089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

本研究利用HadGEM2-AO历史运行数据,通过考虑季节温度变化特征和影响因素,分析西北太平洋和东亚边缘海(110˚E ~ 160˚E, 15˚N ~ 60˚N)的热收支项,评估了模式在海表温度(SST)和净热通量(NHF)方面的性能。HadGEM2-AO的年平均海温比1950 - 2000年的观测值(EN3_v2a)高约0.065℃。1960年以来,该模式较好地模拟了海温的长期变化,模式中海温的上升速率(0.014℃/年)与观测值(0.013℃/年)相当。HadGEM2-AO模拟的海洋向大气的热量损失略高于东亚边缘海和黑潮地区的再分析数据。我们通过计算两个代表性地区的热收支方程来研究温度变化的原因。在黑潮轴中部(125˚E ~ 130˚E, 25˚N ~ 30˚N: A区),地表热通量和垂直热平流对上层混合层的热量损失是导致秋冬季储热减少的主要原因。黑潮引起的热辐合释放潜热通量,使地表净热通量较大。正蓄热率主要由3 ~ 4月的水平热平流和5 ~ 7月的地面净热通量决定。在副热带环流中部(155˚E ~ 160˚E, 22˚N ~ 27˚N: B区),与A区不同,秋冬季垂直热平流主要导致储热减少。在春夏季,地表热通量对B区储热的增加有贡献,其周期是a区的2倍,混合层深度的浅化对海表温度的增加起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Sea Surface Temperature Simulation in the Northwestern Pacific and the East Asian Marginal Seas using HadGEM2-AO
In this study, we evaluated the model performance with respect to Sea Surface Temperature (SST) and Net Heat Flux (NHF) by considering the characteristics of seasonal temperature variation and contributing factors and by analyzing heat budget terms in the Northwestern Pacific and East Asian Marginal Seas (110˚E−160˚E, 15˚N−60˚N) using the HadGEM2-AO historical run. Annual mean SST of the HadGEM2-AO is about 0.065oC higher than observations (EN3_v2a) from 1950 to 2000. Since 1960, the model has simulated well the long-term variation of SST and the increasing rate of SST in the model (0.014℃/year) is comparable with observations (0.013℃/year). Heat loss from the ocean to the atmosphere was simulated slightly higher in the HadGEM2-AO than that in the reanalysis data on the East Asian Marginal Seas and the Kuroshio region. We investigated the causes of temperature variation by calculating the heat budget equation in the two representative regions. In the central part of the Kuroshio axis (125˚E−130˚E, 25˚N−30˚N: Region A), both heat loss in the upper mixed layer by surface heat flux and vertical heat advection mainly cause the decrease of heat storage in autumn and winter. Release of latent heat flux through the heat convergence brought about by the Kuroshio contributes to the large surface net heat flux. Positive heat storage rate is mainly determined by horizontal heat advection from March to April and surface net heat flux from May to July. In the central part of the subtropical gyre (155˚E−160˚E, 22˚N−27˚N: Region B), unlike Region A, vertical heat advection predominantly causes the decrease of heat storage in autumn and winter. In spring and summer, surface heat flux contributes to the increase of heat storage in Region B and the period is two times longer than the period for Region A. In this season, shoaling of the mixed layer depth plays an important role in the increase of SST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean and Polar Research
Ocean and Polar Research Engineering-Ocean Engineering
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信