混合太阳能电池用低带隙聚合物网络原位生长CdS纳米棒的绿色方法

R. Bhardwaj, V. Bharti, Abhishek Sharma, D. Mohanty, V. Agrawal, N. Vats, G. Sharma, N. Chaudhary, Shilpa Jain, Jitender Gaur, Kamalika Banerjee, S. Chand
{"title":"混合太阳能电池用低带隙聚合物网络原位生长CdS纳米棒的绿色方法","authors":"R. Bhardwaj, V. Bharti, Abhishek Sharma, D. Mohanty, V. Agrawal, N. Vats, G. Sharma, N. Chaudhary, Shilpa Jain, Jitender Gaur, Kamalika Banerjee, S. Chand","doi":"10.4236/ANP.2014.33015","DOIUrl":null,"url":null,"abstract":"In-situ growth of CdS nanorods (NRs) has been \ndemonstrated via solvothermal, in a low band gap polymer, poly [[4,8-bis[(2-ethylhexyl)oxy] \nbenzo [1,2-b:4,5-b’] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] \nthieno [3,4-b] thiophenediyl]] (PTB7). It is a high yielding, green approach as \nit removes use of volatile and hazardous chemicals such as pyridine as ligand \nwhich are conventionally used to synthesize precursors of CdS (NRs). Moreover \nthe solvothermal process is a zero emission process being a close vessel \nsynthesis and hence no material leaching into the atmosphere during the \nsynthesis. The PTB7:CdS nanocomposite has been characterized by SEM, XRD, FTIR, \nUV-visible spectroscopy techniques. The photoluminescence (PL) spectroscopy \nstudy of PTB7 with CdS NRs has shown significant PL quenching by the \nincorporation of CdS NRs in PTB7; this shows that CdS NRs are efficient \nelectron acceptors with the PTB7. The PTB7:CdS is used as active layer in the \nfabrication of hybrid solar cells (HSC) as donor-acceptor combination in the \nbulk heterojunction (BHJ) geometry. The HSCs fabricated using this active layer \nwithout any additional supporting fullerene based electron acceptor has given \npower conversion efficiency of above 1%.","PeriodicalId":71264,"journal":{"name":"纳米粒子(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4236/ANP.2014.33015","citationCount":"0","resultStr":"{\"title\":\"Green Approach for In-Situ Growth of CdS Nanorods in Low Band Gap Polymer Network for Hybrid Solar Cell Applications\",\"authors\":\"R. Bhardwaj, V. Bharti, Abhishek Sharma, D. Mohanty, V. Agrawal, N. Vats, G. Sharma, N. Chaudhary, Shilpa Jain, Jitender Gaur, Kamalika Banerjee, S. Chand\",\"doi\":\"10.4236/ANP.2014.33015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-situ growth of CdS nanorods (NRs) has been \\ndemonstrated via solvothermal, in a low band gap polymer, poly [[4,8-bis[(2-ethylhexyl)oxy] \\nbenzo [1,2-b:4,5-b’] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] \\nthieno [3,4-b] thiophenediyl]] (PTB7). It is a high yielding, green approach as \\nit removes use of volatile and hazardous chemicals such as pyridine as ligand \\nwhich are conventionally used to synthesize precursors of CdS (NRs). Moreover \\nthe solvothermal process is a zero emission process being a close vessel \\nsynthesis and hence no material leaching into the atmosphere during the \\nsynthesis. The PTB7:CdS nanocomposite has been characterized by SEM, XRD, FTIR, \\nUV-visible spectroscopy techniques. The photoluminescence (PL) spectroscopy \\nstudy of PTB7 with CdS NRs has shown significant PL quenching by the \\nincorporation of CdS NRs in PTB7; this shows that CdS NRs are efficient \\nelectron acceptors with the PTB7. The PTB7:CdS is used as active layer in the \\nfabrication of hybrid solar cells (HSC) as donor-acceptor combination in the \\nbulk heterojunction (BHJ) geometry. The HSCs fabricated using this active layer \\nwithout any additional supporting fullerene based electron acceptor has given \\npower conversion efficiency of above 1%.\",\"PeriodicalId\":71264,\"journal\":{\"name\":\"纳米粒子(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4236/ANP.2014.33015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"纳米粒子(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ANP.2014.33015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米粒子(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ANP.2014.33015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用溶剂热法在低带隙聚合物聚[[4,8-二[(2-乙基己基)氧]苯并[1,2-b:4,5-b ']二噻吩-2,6-二基][3-氟-2-[(2-乙基己基)羰基]噻吩[3,4-b]噻吩二基](PTB7)中原位生长了CdS纳米棒(nr)。这是一种高产、绿色的方法,因为它不使用挥发性和危险的化学物质,如吡啶作为配体,而这些化学物质通常用于合成CdS (nr)的前体。此外,溶剂热过程是一个零排放过程,是一个紧密的容器合成,因此在合成过程中没有物质浸出到大气中。采用SEM、XRD、FTIR、紫外可见光谱等技术对PTB7:CdS纳米复合材料进行了表征。PTB7与CdS NRs的光致发光(PL)光谱研究表明,CdS NRs掺入PTB7后,PTB7发生了明显的PL猝灭;这表明CdS NRs与PTB7是有效的电子受体。PTB7:CdS被用作混合太阳能电池(HSC)制造中的有源层,作为体异质结(BHJ)几何结构中的供体-受体组合。利用该活性层制备的hsc没有任何额外的支持富勒烯基电子受体,其功率转换效率超过1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Approach for In-Situ Growth of CdS Nanorods in Low Band Gap Polymer Network for Hybrid Solar Cell Applications
In-situ growth of CdS nanorods (NRs) has been demonstrated via solvothermal, in a low band gap polymer, poly [[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-b:4,5-b’] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]] (PTB7). It is a high yielding, green approach as it removes use of volatile and hazardous chemicals such as pyridine as ligand which are conventionally used to synthesize precursors of CdS (NRs). Moreover the solvothermal process is a zero emission process being a close vessel synthesis and hence no material leaching into the atmosphere during the synthesis. The PTB7:CdS nanocomposite has been characterized by SEM, XRD, FTIR, UV-visible spectroscopy techniques. The photoluminescence (PL) spectroscopy study of PTB7 with CdS NRs has shown significant PL quenching by the incorporation of CdS NRs in PTB7; this shows that CdS NRs are efficient electron acceptors with the PTB7. The PTB7:CdS is used as active layer in the fabrication of hybrid solar cells (HSC) as donor-acceptor combination in the bulk heterojunction (BHJ) geometry. The HSCs fabricated using this active layer without any additional supporting fullerene based electron acceptor has given power conversion efficiency of above 1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
106
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信