基于模糊推理脉冲神经P系统的电力变压器故障诊断

Y. Yahya, Ai Qian, Adel Yahya
{"title":"基于模糊推理脉冲神经P系统的电力变压器故障诊断","authors":"Y. Yahya, Ai Qian, Adel Yahya","doi":"10.4236/JILSA.2016.84007","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"08 1","pages":"77-91"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Power Transformer Fault Diagnosis Using Fuzzy Reasoning Spiking Neural P Systems\",\"authors\":\"Y. Yahya, Ai Qian, Adel Yahya\",\"doi\":\"10.4236/JILSA.2016.84007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":\"08 1\",\"pages\":\"77-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2016.84007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2016.84007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种电力变压器溶解与游离气体分析(DGA)智能故障诊断技术。模糊推理脉冲神经P系统(FRSN P系统)作为一种膜计算分布式并行计算模型,是一种功能强大、适用于模糊诊断知识的图形化方法模型。从某种意义上说,这一特征是在学习阶段建立电力变压器故障识别和隐式捕获知识所必需的,使用语言变量、每个气体特征的“低”、“中”和“高”描述的隶属函数以及推理规则库。利用隶属函数将判断转化为模糊数的数值表达。分析了四气比(IEC 60599)信号作为FRSN - P系统输入数据的性能方法。用例结果表明,本文提出的电力变压器故障诊断方法能显著提高电力变压器故障诊断的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Transformer Fault Diagnosis Using Fuzzy Reasoning Spiking Neural P Systems
This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信