网页自动分类的改进词权加权技术

Kathirvalavakumar Thangairulappan, Arun Kanagavel
{"title":"网页自动分类的改进词权加权技术","authors":"Kathirvalavakumar Thangairulappan, Arun Kanagavel","doi":"10.4236/JILSA.2016.84006","DOIUrl":null,"url":null,"abstract":"Automatic web page classification has become inevitable for web directories due to the multitude of web pages in the World Wide Web. In this paper an improved Term Weighting technique is proposed for automatic and effective classification of web pages. The web documents are represented as set of features. The proposed method selects and extracts the most prominent features reducing the high dimensionality problem of classifier. The proper selection of features among the large set improves the performance of the classifier. The proposed algorithm is implemented and tested on a benchmarked dataset. The results show the better performance than most of the existing term weighting techniques.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"08 1","pages":"63-76"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improved Term Weighting Technique for Automatic Web Page Classification\",\"authors\":\"Kathirvalavakumar Thangairulappan, Arun Kanagavel\",\"doi\":\"10.4236/JILSA.2016.84006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic web page classification has become inevitable for web directories due to the multitude of web pages in the World Wide Web. In this paper an improved Term Weighting technique is proposed for automatic and effective classification of web pages. The web documents are represented as set of features. The proposed method selects and extracts the most prominent features reducing the high dimensionality problem of classifier. The proper selection of features among the large set improves the performance of the classifier. The proposed algorithm is implemented and tested on a benchmarked dataset. The results show the better performance than most of the existing term weighting techniques.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":\"08 1\",\"pages\":\"63-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2016.84006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2016.84006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于万维网上的网页数量众多,网页自动分类已成为网络目录的必然选择。本文提出了一种改进的词权技术,用于网页的自动有效分类。web文档被表示为一组特性。该方法选择并提取最突出的特征,减少了分类器的高维问题。在大集合中正确选择特征可以提高分类器的性能。该算法在一个基准数据集上进行了实现和测试。结果表明,该方法比大多数现有的术语加权技术具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Term Weighting Technique for Automatic Web Page Classification
Automatic web page classification has become inevitable for web directories due to the multitude of web pages in the World Wide Web. In this paper an improved Term Weighting technique is proposed for automatic and effective classification of web pages. The web documents are represented as set of features. The proposed method selects and extracts the most prominent features reducing the high dimensionality problem of classifier. The proper selection of features among the large set improves the performance of the classifier. The proposed algorithm is implemented and tested on a benchmarked dataset. The results show the better performance than most of the existing term weighting techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信