使用结构化训练实例和分类器集合对非结构化文本进行分类

A. Lianos, Yanyan Yang
{"title":"使用结构化训练实例和分类器集合对非结构化文本进行分类","authors":"A. Lianos, Yanyan Yang","doi":"10.4236/JILSA.2015.72006","DOIUrl":null,"url":null,"abstract":"Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"07 1","pages":"58-73"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classifying Unstructured Text Using Structured Training Instances and an Ensemble of Classifiers\",\"authors\":\"A. Lianos, Yanyan Yang\",\"doi\":\"10.4236/JILSA.2015.72006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":\"07 1\",\"pages\":\"58-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2015.72006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2015.72006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

典型的监督分类技术需要与需要分类的值相似的训练实例。本研究提出了一种方法,可以利用以不同格式找到的训练实例。这种方法的好处是,它允许使用传统的分类技术,如果信息存在于其他数据源中,则不需要手动标记训练实例。通过一个实际的分类应用,提出了该方法。评价结果表明,该方法是可行的,分类器的分割精度大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Unstructured Text Using Structured Training Instances and an Ensemble of Classifiers
Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信