城市轨道交通分段客流预测方法研究

Qian Li, Yong Qin, Zi-yang Wang, Z. Zhao, Minghui Zhan, Yu Liu, Zhiguo Li
{"title":"城市轨道交通分段客流预测方法研究","authors":"Qian Li, Yong Qin, Zi-yang Wang, Z. Zhao, Minghui Zhan, Yu Liu, Zhiguo Li","doi":"10.4236/JILSA.2013.54026","DOIUrl":null,"url":null,"abstract":"This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"05 1","pages":"227-231"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The Research of Urban Rail Transit Sectional Passenger Flow Prediction Method\",\"authors\":\"Qian Li, Yong Qin, Zi-yang Wang, Z. Zhao, Minghui Zhan, Yu Liu, Zhiguo Li\",\"doi\":\"10.4236/JILSA.2013.54026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":\"05 1\",\"pages\":\"227-231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2013.54026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2013.54026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文对分段客流的短期预测方法进行了研究,选择了结合分段客流本身特点的BP神经网络。通过案例研究,我们设计了三种不同的方案。利用Matlab实现了对北京地铁2号线分段客流的预测,并进行了对比分析。实证研究表明,将分段客流数据特征与BP神经网络相结合,具有较好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Research of Urban Rail Transit Sectional Passenger Flow Prediction Method
This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信