低维投影空间中具有最低阶的曲线

IF 0.5 Q3 MATHEMATICS
E. Ballico
{"title":"低维投影空间中具有最低阶的曲线","authors":"E. Ballico","doi":"10.4067/s0719-06462020000300379","DOIUrl":null,"url":null,"abstract":"Let X ⊂ P r be an integral and non-degenerate curve. For each q ∈ P r the X -rank r X ( q ) of q is the minimal number of points of X spanning q . A general point of P r has X -rank ⌈ ( r + 1) / 2 ⌉ . For r = 3 (resp. r = 4) we construct many smooth curves such that r X ( q ) ≤ 2 (resp. r X ( q ) ≤ 3) for all q ∈ P r (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus. q ∈ P r el -rango X ) q que generan q P r tiene X -rango ⌈ ( r + 1) / 2 ⌉ . Para r = 3 (resp. r = 4) construimos q ) ≤ 2 (resp. r X ( q ) q ∈ P r superior geom´etricos aritm´etico.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curves in low dimensional projective spaces with the lowest ranks\",\"authors\":\"E. Ballico\",\"doi\":\"10.4067/s0719-06462020000300379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X ⊂ P r be an integral and non-degenerate curve. For each q ∈ P r the X -rank r X ( q ) of q is the minimal number of points of X spanning q . A general point of P r has X -rank ⌈ ( r + 1) / 2 ⌉ . For r = 3 (resp. r = 4) we construct many smooth curves such that r X ( q ) ≤ 2 (resp. r X ( q ) ≤ 3) for all q ∈ P r (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus. q ∈ P r el -rango X ) q que generan q P r tiene X -rango ⌈ ( r + 1) / 2 ⌉ . Para r = 3 (resp. r = 4) construimos q ) ≤ 2 (resp. r X ( q ) q ∈ P r superior geom´etricos aritm´etico.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/s0719-06462020000300379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462020000300379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设X≠P r为一条积分非简并曲线。对于每一个q∈P r, q的X -rank r X (q)是X生成q的最小点数。P r的一般点具有X -秩(r + 1) / 2)。当r = 3时。r = 4),我们构造了许多光滑曲线,使得r X (q)≤2 (resp。r X (q)≤3)对于所有q∈P r(可能的最佳上界)。我们还构造了具有相同性质的节点曲线和几乎所有算术属的Castelnuovo上界所允许的几何属。q∈P r r l -rango X) q que generan q P r r tiene X -rango≤(r + 1) / 2≤。第3段:R = 4)解释q)≤2 (resp。r X (q) q∈P r优越的几何算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curves in low dimensional projective spaces with the lowest ranks
Let X ⊂ P r be an integral and non-degenerate curve. For each q ∈ P r the X -rank r X ( q ) of q is the minimal number of points of X spanning q . A general point of P r has X -rank ⌈ ( r + 1) / 2 ⌉ . For r = 3 (resp. r = 4) we construct many smooth curves such that r X ( q ) ≤ 2 (resp. r X ( q ) ≤ 3) for all q ∈ P r (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus. q ∈ P r el -rango X ) q que generan q P r tiene X -rango ⌈ ( r + 1) / 2 ⌉ . Para r = 3 (resp. r = 4) construimos q ) ≤ 2 (resp. r X ( q ) q ∈ P r superior geom´etricos aritm´etico.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信