非结构化博客文本的自动分类

M. K. Dalal, M. Zaveri
{"title":"非结构化博客文本的自动分类","authors":"M. K. Dalal, M. Zaveri","doi":"10.4236/JILSA.2013.52012","DOIUrl":null,"url":null,"abstract":"Automatic classification of blog entries is generally treated as a semi-supervised machine learning task, in which the blog entries are automatically assigned to one of a set of pre-defined classes based on the features extracted from their textual content. This paper attempts automatic classification of unstructured blog entries by following pre-processing steps like tokenization, stop-word elimination and stemming; statistical techniques for feature set extraction, and feature set enhancement using semantic resources followed by modeling using two alternative machine learning models—the na?ve Bayesian model and the artificial neural network model. Empirical evaluations indicate that this multi-step classification approach has resulted in good overall classification accuracy over unstructured blog text datasets with both machine learning model alternatives. However, the na?ve Bayesian classification model clearly out-performs the ANN based classification model when a smaller feature-set is available which is usually the case when a blog topic is recent and the number of training datasets available is restricted.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Automatic Classification of Unstructured Blog Text\",\"authors\":\"M. K. Dalal, M. Zaveri\",\"doi\":\"10.4236/JILSA.2013.52012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic classification of blog entries is generally treated as a semi-supervised machine learning task, in which the blog entries are automatically assigned to one of a set of pre-defined classes based on the features extracted from their textual content. This paper attempts automatic classification of unstructured blog entries by following pre-processing steps like tokenization, stop-word elimination and stemming; statistical techniques for feature set extraction, and feature set enhancement using semantic resources followed by modeling using two alternative machine learning models—the na?ve Bayesian model and the artificial neural network model. Empirical evaluations indicate that this multi-step classification approach has resulted in good overall classification accuracy over unstructured blog text datasets with both machine learning model alternatives. However, the na?ve Bayesian classification model clearly out-performs the ANN based classification model when a smaller feature-set is available which is usually the case when a blog topic is recent and the number of training datasets available is restricted.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2013.52012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2013.52012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

博客条目的自动分类通常被视为半监督机器学习任务,其中博客条目根据从其文本内容中提取的特征自动分配到一组预定义类中的一个。本文尝试通过标记化、停止词消除和词干提取等预处理步骤对非结构化博客条目进行自动分类;特征集提取的统计技术,以及使用语义资源的特征集增强,然后使用两种可选的机器学习模型(na?贝叶斯模型和人工神经网络模型。经验评估表明,这种多步骤分类方法在使用两种机器学习模型替代方案的非结构化博客文本数据集上产生了良好的总体分类精度。然而,na?当可用的特征集较小时,贝叶斯分类模型明显优于基于人工神经网络的分类模型,这种情况通常发生在博客主题是最近的并且可用的训练数据集数量有限的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Classification of Unstructured Blog Text
Automatic classification of blog entries is generally treated as a semi-supervised machine learning task, in which the blog entries are automatically assigned to one of a set of pre-defined classes based on the features extracted from their textual content. This paper attempts automatic classification of unstructured blog entries by following pre-processing steps like tokenization, stop-word elimination and stemming; statistical techniques for feature set extraction, and feature set enhancement using semantic resources followed by modeling using two alternative machine learning models—the na?ve Bayesian model and the artificial neural network model. Empirical evaluations indicate that this multi-step classification approach has resulted in good overall classification accuracy over unstructured blog text datasets with both machine learning model alternatives. However, the na?ve Bayesian classification model clearly out-performs the ANN based classification model when a smaller feature-set is available which is usually the case when a blog topic is recent and the number of training datasets available is restricted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信