同心圆上离散符号测度的绿色能量

IF 0.8 3区 数学 Q2 MATHEMATICS
V. Dubinin
{"title":"同心圆上离散符号测度的绿色能量","authors":"V. Dubinin","doi":"10.4213/im9343e","DOIUrl":null,"url":null,"abstract":"We show that the difference between the Green energy of a discrete signed measure relative to a circular annulus concentrated at some points on concentric circles and the energy of the signed measure at symmetric points is non-decreasing during the expansion of the annulus. As a corollary, generalizations of the classical Pólya-Schur inequality for complex numbers are obtained. Some open problems are formulated.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green energy of discrete signed measure on concentric circles\",\"authors\":\"V. Dubinin\",\"doi\":\"10.4213/im9343e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the difference between the Green energy of a discrete signed measure relative to a circular annulus concentrated at some points on concentric circles and the energy of the signed measure at symmetric points is non-decreasing during the expansion of the annulus. As a corollary, generalizations of the classical Pólya-Schur inequality for complex numbers are obtained. Some open problems are formulated.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4213/im9343e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/im9343e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在环空的扩展过程中,集中在同心圆上某些点上的离散有符号测量的相对于环空的绿色能量与对称点上的有符号测量的能量之差不减小。作为推论,得到了classicalPólya-Schur不等式对复数的推广。一些开放问题被公式化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green energy of discrete signed measure on concentric circles
We show that the difference between the Green energy of a discrete signed measure relative to a circular annulus concentrated at some points on concentric circles and the energy of the signed measure at symmetric points is non-decreasing during the expansion of the annulus. As a corollary, generalizations of the classical Pólya-Schur inequality for complex numbers are obtained. Some open problems are formulated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信