二维Neumann和Dirichlet问题中集中质量的“远场相互作用”

IF 0.8 3区 数学 Q2 MATHEMATICS
S. Nazarov
{"title":"二维Neumann和Dirichlet问题中集中质量的“远场相互作用”","authors":"S. Nazarov","doi":"10.4213/im9262e","DOIUrl":null,"url":null,"abstract":"We study the eigenvalues of the Neumann and Dirichlet boundary-value problems in a two-dimensional domain containing several small, of diameter $O(\\varepsilon)$, inclusions of large \"density\" $O(\\varepsilon^{-\\gamma})$, $\\gamma\\geq2$, that is, the \"mass\" $O(\\varepsilon^{2-\\gamma})$ of each of them is comparable ($\\gamma=2$) or much bigger ($\\gamma>2$) than that of the embracing material. We construct a model of such spectral problems on concentrated masses which (the model) provides an asymptotic expansions of the eigenvalues with remainders of power-law smallness order $O(\\varepsilon^{\\vartheta})$ as $\\varepsilon\\to+0$ and $\\vartheta\\in(0,1)$. Besides, the correction terms are real analytic functions of the parameter $|{\\ln \\varepsilon}|^{-1}$. A \"far-field interaction\" of the inclusions is observed at the levels $|{\\ln \\varepsilon}|^{-1}$ or $|{\\ln \\varepsilon}|^{-2}$. The results are obtained with the help of the machinery of weighted spaces with detached asymptotics and also by using weighted estimates of solutions to limit problems in a bounded punctured domain and in the intact plane.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Far-field interaction\\\" of concentrated masses in two-dimensional Neumann and Dirichlet problems\",\"authors\":\"S. Nazarov\",\"doi\":\"10.4213/im9262e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the eigenvalues of the Neumann and Dirichlet boundary-value problems in a two-dimensional domain containing several small, of diameter $O(\\\\varepsilon)$, inclusions of large \\\"density\\\" $O(\\\\varepsilon^{-\\\\gamma})$, $\\\\gamma\\\\geq2$, that is, the \\\"mass\\\" $O(\\\\varepsilon^{2-\\\\gamma})$ of each of them is comparable ($\\\\gamma=2$) or much bigger ($\\\\gamma>2$) than that of the embracing material. We construct a model of such spectral problems on concentrated masses which (the model) provides an asymptotic expansions of the eigenvalues with remainders of power-law smallness order $O(\\\\varepsilon^{\\\\vartheta})$ as $\\\\varepsilon\\\\to+0$ and $\\\\vartheta\\\\in(0,1)$. Besides, the correction terms are real analytic functions of the parameter $|{\\\\ln \\\\varepsilon}|^{-1}$. A \\\"far-field interaction\\\" of the inclusions is observed at the levels $|{\\\\ln \\\\varepsilon}|^{-1}$ or $|{\\\\ln \\\\varepsilon}|^{-2}$. The results are obtained with the help of the machinery of weighted spaces with detached asymptotics and also by using weighted estimates of solutions to limit problems in a bounded punctured domain and in the intact plane.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4213/im9262e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/im9262e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究二维域内Neumann和Dirichlet边值问题的特征值,其中包含几个直径$O(\varepsilon)$的小“密度”$O(\varepsilon^{-\gamma})$, $\gamma\geq2$的内含物,也就是说,它们中的每一个的“质量”$O(\varepsilon^{2-\gamma})$与包裹材料的质量相当($\gamma=2$)或大得多($\gamma>2$)。我们构造了这类集中质量谱问题的一个模型,该模型提供了特征值的渐近展开式,其余数幂律小阶$O(\varepsilon^{\vartheta})$为$\varepsilon\to+0$和$\vartheta\in(0,1)$。校正项是参数$|{\ln \varepsilon}|^{-1}$的实解析函数。包裹体的“远场相互作用”在$|{\ln \varepsilon}|^{-1}$或$|{\ln \varepsilon}|^{-2}$能级被观察到。利用具有分离渐近的加权空间的机制,以及在有界穿孔区域和完整平面上使用加权估计解来解决极限问题,得到了上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Far-field interaction" of concentrated masses in two-dimensional Neumann and Dirichlet problems
We study the eigenvalues of the Neumann and Dirichlet boundary-value problems in a two-dimensional domain containing several small, of diameter $O(\varepsilon)$, inclusions of large "density" $O(\varepsilon^{-\gamma})$, $\gamma\geq2$, that is, the "mass" $O(\varepsilon^{2-\gamma})$ of each of them is comparable ($\gamma=2$) or much bigger ($\gamma>2$) than that of the embracing material. We construct a model of such spectral problems on concentrated masses which (the model) provides an asymptotic expansions of the eigenvalues with remainders of power-law smallness order $O(\varepsilon^{\vartheta})$ as $\varepsilon\to+0$ and $\vartheta\in(0,1)$. Besides, the correction terms are real analytic functions of the parameter $|{\ln \varepsilon}|^{-1}$. A "far-field interaction" of the inclusions is observed at the levels $|{\ln \varepsilon}|^{-1}$ or $|{\ln \varepsilon}|^{-2}$. The results are obtained with the help of the machinery of weighted spaces with detached asymptotics and also by using weighted estimates of solutions to limit problems in a bounded punctured domain and in the intact plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信