子集数问题分支方法和边界变体的复杂性最高估计

Роман Максимович Колпаков, Михаил Анатольевич Посыпкин, Си Ту Тант Син
{"title":"子集数问题分支方法和边界变体的复杂性最高估计","authors":"Роман Максимович Колпаков, Михаил Анатольевич Посыпкин, Си Ту Тант Син","doi":"10.4213/DM1405","DOIUrl":null,"url":null,"abstract":"In the paper we obtain an upper bound for the complexity of solving the subset sum problem which is a particular case of the knapsack problem by one of the variants of the branch-and-bound method with an additional pruning rule based on the comparison of the maximum and minimum number of items that can be put into the knapsack. As auxiliary results, we establish various combinatorial properties of subproblems processed for solving the subset sum problem by the considered variant of the branch-and-bound method.","PeriodicalId":30498,"journal":{"name":"International Journal of Open Information Technologies","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Верхняя оценка сложности одного из вариантов метода ветвей и границ для задачи о сумме подмножеств\",\"authors\":\"Роман Максимович Колпаков, Михаил Анатольевич Посыпкин, Си Ту Тант Син\",\"doi\":\"10.4213/DM1405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we obtain an upper bound for the complexity of solving the subset sum problem which is a particular case of the knapsack problem by one of the variants of the branch-and-bound method with an additional pruning rule based on the comparison of the maximum and minimum number of items that can be put into the knapsack. As auxiliary results, we establish various combinatorial properties of subproblems processed for solving the subset sum problem by the considered variant of the branch-and-bound method.\",\"PeriodicalId\":30498,\"journal\":{\"name\":\"International Journal of Open Information Technologies\",\"volume\":\"4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/DM1405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/DM1405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用分支定界法的一种变体,通过比较背包内可放物品的最大和最小数目,得到了解决背包问题的一种特殊情况的子集和问题的复杂度的上界。作为辅助结果,我们建立了用所考虑的分支定界方法的变体求解子集和问题所处理的子问题的各种组合性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Верхняя оценка сложности одного из вариантов метода ветвей и границ для задачи о сумме подмножеств
In the paper we obtain an upper bound for the complexity of solving the subset sum problem which is a particular case of the knapsack problem by one of the variants of the branch-and-bound method with an additional pruning rule based on the comparison of the maximum and minimum number of items that can be put into the knapsack. As auxiliary results, we establish various combinatorial properties of subproblems processed for solving the subset sum problem by the considered variant of the branch-and-bound method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
217
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信