Роман Максимович Колпаков, Михаил Анатольевич Посыпкин, Си Ту Тант Син
{"title":"子集数问题分支方法和边界变体的复杂性最高估计","authors":"Роман Максимович Колпаков, Михаил Анатольевич Посыпкин, Си Ту Тант Син","doi":"10.4213/DM1405","DOIUrl":null,"url":null,"abstract":"In the paper we obtain an upper bound for the complexity of solving the subset sum problem which is a particular case of the knapsack problem by one of the variants of the branch-and-bound method with an additional pruning rule based on the comparison of the maximum and minimum number of items that can be put into the knapsack. As auxiliary results, we establish various combinatorial properties of subproblems processed for solving the subset sum problem by the considered variant of the branch-and-bound method.","PeriodicalId":30498,"journal":{"name":"International Journal of Open Information Technologies","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Верхняя оценка сложности одного из вариантов метода ветвей и границ для задачи о сумме подмножеств\",\"authors\":\"Роман Максимович Колпаков, Михаил Анатольевич Посыпкин, Си Ту Тант Син\",\"doi\":\"10.4213/DM1405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we obtain an upper bound for the complexity of solving the subset sum problem which is a particular case of the knapsack problem by one of the variants of the branch-and-bound method with an additional pruning rule based on the comparison of the maximum and minimum number of items that can be put into the knapsack. As auxiliary results, we establish various combinatorial properties of subproblems processed for solving the subset sum problem by the considered variant of the branch-and-bound method.\",\"PeriodicalId\":30498,\"journal\":{\"name\":\"International Journal of Open Information Technologies\",\"volume\":\"4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/DM1405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/DM1405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Верхняя оценка сложности одного из вариантов метода ветвей и границ для задачи о сумме подмножеств
In the paper we obtain an upper bound for the complexity of solving the subset sum problem which is a particular case of the knapsack problem by one of the variants of the branch-and-bound method with an additional pruning rule based on the comparison of the maximum and minimum number of items that can be put into the knapsack. As auxiliary results, we establish various combinatorial properties of subproblems processed for solving the subset sum problem by the considered variant of the branch-and-bound method.