{"title":"基于人工神经网络的重庆市PM2.5和PM10逐时浓度预测","authors":"Qingchun Guo, Zhenfang He, Zhaosheng Wang","doi":"10.4209/aaqr.220448","DOIUrl":null,"url":null,"abstract":"Accurate prediction of air pollution is a difficult problem to be solved in atmospheric environment research. An Artificial Neural Network (ANN) is exploited to predict hourly PM 2.5 and PM 10 concentrations in Chongqing City. We take PM 2.5 (PM 10 ), time and meteorological elements as the input of the ANN, and the PM 2.5 (PM 10 ) of the next hour as the output to build an ANN model. Thirteen kinds of training functions are compared to obtain the optimal function. The research results display that the ANN model exhibits good performance in predicting hourly PM 2.5 and PM 10 concentrations. Trainbr is the best function for predicting PM 2.5 concentrations compared to other training functions with R value (0.9783), RMSE (1.2271), and MAE (0.9050). Trainlm is the second best with R value (0.9495), RMSE (1.8845), and MAE (1.3902). Similarly, trainbr is also the best in forecasting PM 10 concentrations with R value (0.9773), RMSE value (1.8270), and MAE value (1.4341). Trainlm is the second best with R value (0.9522), RMSE (2.6708), and MAE (1.8554). These two training functions have good generalization ability and can meet the needs of hourly PM 2.5 and PM 10 prediction. The forecast results can support fine management and help improve the ability to prevent and control air pollution in advance, accurately and scientifically.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"42 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Prediction of Hourly PM2.5 and PM10 Concentrations in Chongqing City in China Based on Artificial Neural Network\",\"authors\":\"Qingchun Guo, Zhenfang He, Zhaosheng Wang\",\"doi\":\"10.4209/aaqr.220448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of air pollution is a difficult problem to be solved in atmospheric environment research. An Artificial Neural Network (ANN) is exploited to predict hourly PM 2.5 and PM 10 concentrations in Chongqing City. We take PM 2.5 (PM 10 ), time and meteorological elements as the input of the ANN, and the PM 2.5 (PM 10 ) of the next hour as the output to build an ANN model. Thirteen kinds of training functions are compared to obtain the optimal function. The research results display that the ANN model exhibits good performance in predicting hourly PM 2.5 and PM 10 concentrations. Trainbr is the best function for predicting PM 2.5 concentrations compared to other training functions with R value (0.9783), RMSE (1.2271), and MAE (0.9050). Trainlm is the second best with R value (0.9495), RMSE (1.8845), and MAE (1.3902). Similarly, trainbr is also the best in forecasting PM 10 concentrations with R value (0.9773), RMSE value (1.8270), and MAE value (1.4341). Trainlm is the second best with R value (0.9522), RMSE (2.6708), and MAE (1.8554). These two training functions have good generalization ability and can meet the needs of hourly PM 2.5 and PM 10 prediction. The forecast results can support fine management and help improve the ability to prevent and control air pollution in advance, accurately and scientifically.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.220448\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220448","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Prediction of Hourly PM2.5 and PM10 Concentrations in Chongqing City in China Based on Artificial Neural Network
Accurate prediction of air pollution is a difficult problem to be solved in atmospheric environment research. An Artificial Neural Network (ANN) is exploited to predict hourly PM 2.5 and PM 10 concentrations in Chongqing City. We take PM 2.5 (PM 10 ), time and meteorological elements as the input of the ANN, and the PM 2.5 (PM 10 ) of the next hour as the output to build an ANN model. Thirteen kinds of training functions are compared to obtain the optimal function. The research results display that the ANN model exhibits good performance in predicting hourly PM 2.5 and PM 10 concentrations. Trainbr is the best function for predicting PM 2.5 concentrations compared to other training functions with R value (0.9783), RMSE (1.2271), and MAE (0.9050). Trainlm is the second best with R value (0.9495), RMSE (1.8845), and MAE (1.3902). Similarly, trainbr is also the best in forecasting PM 10 concentrations with R value (0.9773), RMSE value (1.8270), and MAE value (1.4341). Trainlm is the second best with R value (0.9522), RMSE (2.6708), and MAE (1.8554). These two training functions have good generalization ability and can meet the needs of hourly PM 2.5 and PM 10 prediction. The forecast results can support fine management and help improve the ability to prevent and control air pollution in advance, accurately and scientifically.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.