{"title":"基于区域和全球排放清单数据集的东盟排放年代际变化综述","authors":"S. Roy, Y. Lam, S. S. Chopra, M. Hoque","doi":"10.4209/aaqr.220103","DOIUrl":null,"url":null,"abstract":"In Asia, anthropogenic emissions have increased substantially over the last decade from various sectors, including power generation (PG), industries, road transportation (RT), and residential. This study analyzed different regional (REAS, MIX-Asia) and global (EDGAR) emission inventory (EI) datasets to provide insight into ASEAN's comprehensive emission status (emission trend, sectoral and country-specific emissions, changes in spatial distribution) during 2000–2015. The study observed a considerable increase in SO 2 , NO x , CO, CO 2 , and particulate matter (PM) emissions in ASEAN during this period. Results analyzed from the EDGAR EI dataset (2015) show that among the pollutants, SO 2 , CO 2 , and N 2 O were substantially contributed by the PG sector (43.4–56%), while CO, NO x , NMVOC, and CH 4 were from the RT sector (35.6–61.5%), and PM and NH 3 emissions were from the residential sector (50–80.6%). Similar contributions were also observed in 2000 and 2010. It is apparent that these sectors contributed noticeably to the total Asian emission (i.e., 14–34% in 2010, based on the MIX-Asian dataset). We have observed increasing annual emission trends for most pollutants in ASEAN countries, with more significant emission growth in Vietnam (e.g., SO 2 and NO x emissions increased by 232% and 145%, respectively). Considerable changes in spatial emission distributions over the ASEAN between that period were also observed caused by the shifting of sparse development into concentrated urban expansion surrounding large metropolitan clusters. The information from this study will be vital for the ASEAN governments to review and update their approved/planned regulations on emission control with prioritizing the sectors aimed at air quality management and environmental sustainability.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Review of Decadal Changes in ASEAN Emissions Based on Regional and Global Emission Inventory Datasets\",\"authors\":\"S. Roy, Y. Lam, S. S. Chopra, M. Hoque\",\"doi\":\"10.4209/aaqr.220103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Asia, anthropogenic emissions have increased substantially over the last decade from various sectors, including power generation (PG), industries, road transportation (RT), and residential. This study analyzed different regional (REAS, MIX-Asia) and global (EDGAR) emission inventory (EI) datasets to provide insight into ASEAN's comprehensive emission status (emission trend, sectoral and country-specific emissions, changes in spatial distribution) during 2000–2015. The study observed a considerable increase in SO 2 , NO x , CO, CO 2 , and particulate matter (PM) emissions in ASEAN during this period. Results analyzed from the EDGAR EI dataset (2015) show that among the pollutants, SO 2 , CO 2 , and N 2 O were substantially contributed by the PG sector (43.4–56%), while CO, NO x , NMVOC, and CH 4 were from the RT sector (35.6–61.5%), and PM and NH 3 emissions were from the residential sector (50–80.6%). Similar contributions were also observed in 2000 and 2010. It is apparent that these sectors contributed noticeably to the total Asian emission (i.e., 14–34% in 2010, based on the MIX-Asian dataset). We have observed increasing annual emission trends for most pollutants in ASEAN countries, with more significant emission growth in Vietnam (e.g., SO 2 and NO x emissions increased by 232% and 145%, respectively). Considerable changes in spatial emission distributions over the ASEAN between that period were also observed caused by the shifting of sparse development into concentrated urban expansion surrounding large metropolitan clusters. The information from this study will be vital for the ASEAN governments to review and update their approved/planned regulations on emission control with prioritizing the sectors aimed at air quality management and environmental sustainability.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.220103\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220103","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Review of Decadal Changes in ASEAN Emissions Based on Regional and Global Emission Inventory Datasets
In Asia, anthropogenic emissions have increased substantially over the last decade from various sectors, including power generation (PG), industries, road transportation (RT), and residential. This study analyzed different regional (REAS, MIX-Asia) and global (EDGAR) emission inventory (EI) datasets to provide insight into ASEAN's comprehensive emission status (emission trend, sectoral and country-specific emissions, changes in spatial distribution) during 2000–2015. The study observed a considerable increase in SO 2 , NO x , CO, CO 2 , and particulate matter (PM) emissions in ASEAN during this period. Results analyzed from the EDGAR EI dataset (2015) show that among the pollutants, SO 2 , CO 2 , and N 2 O were substantially contributed by the PG sector (43.4–56%), while CO, NO x , NMVOC, and CH 4 were from the RT sector (35.6–61.5%), and PM and NH 3 emissions were from the residential sector (50–80.6%). Similar contributions were also observed in 2000 and 2010. It is apparent that these sectors contributed noticeably to the total Asian emission (i.e., 14–34% in 2010, based on the MIX-Asian dataset). We have observed increasing annual emission trends for most pollutants in ASEAN countries, with more significant emission growth in Vietnam (e.g., SO 2 and NO x emissions increased by 232% and 145%, respectively). Considerable changes in spatial emission distributions over the ASEAN between that period were also observed caused by the shifting of sparse development into concentrated urban expansion surrounding large metropolitan clusters. The information from this study will be vital for the ASEAN governments to review and update their approved/planned regulations on emission control with prioritizing the sectors aimed at air quality management and environmental sustainability.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.