Mohammad Mirzehi Kalateh Kazemi, Zohreh Nabavi, M. Khandelwal
{"title":"利用混合机器学习模型和基因表达编程(GEP)预测爆炸引起的空气超压:以某铁矿为例","authors":"Mohammad Mirzehi Kalateh Kazemi, Zohreh Nabavi, M. Khandelwal","doi":"10.3934/geosci.2023019","DOIUrl":null,"url":null,"abstract":"Mine blasting can have a destructive effect on the environment. Among these effects, air overpressure (AOp) is a major concern. Therefore, a careful assessment of the AOp intensity should be conducted before any blasting operation in order to minimize the associated environmental detriment. Several empirical models have been established to predict and control AOp. However, the current empirical methods have many limitations, including low accuracy, poor generalizability, consideration only of linear relationships among influencing parameters, and investigation of only a few influencing parameters. Thus, the current research presents a hybrid model which combines an extreme gradient boosting algorithm (XGB) with grey wolf optimization (GWO) for accurately predicting AOp. Furthermore, an empirical model and gene expression programming (GEP) were used to assess the validity of the hybrid model (XGB-GWO). An analysis of 66 blastings with their corresponding AOp values and influential parameters was conducted to achieve the goals of this research. The efficiency of AOp prediction methods was evaluated in terms of mean absolute error (MAE), coefficient of determination (R2), and root mean square error (RMSE). Based on the calculations, the XGB-GWO model has performed as well as the empirical and GEP models. Next, the most significant parameters for predicting AOp were determined using a sensitivity analysis. Based on the analysis results, stemming length and rock quality designation (RQD) were identified as two variables with the greatest influence. This study showed that the proposed XGB-GWO method was robust and applicable for predicting AOp driven by blasting operations.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of blast-induced air overpressure using a hybrid machine learning model and gene expression programming (GEP): A case study from an iron ore mine\",\"authors\":\"Mohammad Mirzehi Kalateh Kazemi, Zohreh Nabavi, M. Khandelwal\",\"doi\":\"10.3934/geosci.2023019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mine blasting can have a destructive effect on the environment. Among these effects, air overpressure (AOp) is a major concern. Therefore, a careful assessment of the AOp intensity should be conducted before any blasting operation in order to minimize the associated environmental detriment. Several empirical models have been established to predict and control AOp. However, the current empirical methods have many limitations, including low accuracy, poor generalizability, consideration only of linear relationships among influencing parameters, and investigation of only a few influencing parameters. Thus, the current research presents a hybrid model which combines an extreme gradient boosting algorithm (XGB) with grey wolf optimization (GWO) for accurately predicting AOp. Furthermore, an empirical model and gene expression programming (GEP) were used to assess the validity of the hybrid model (XGB-GWO). An analysis of 66 blastings with their corresponding AOp values and influential parameters was conducted to achieve the goals of this research. The efficiency of AOp prediction methods was evaluated in terms of mean absolute error (MAE), coefficient of determination (R2), and root mean square error (RMSE). Based on the calculations, the XGB-GWO model has performed as well as the empirical and GEP models. Next, the most significant parameters for predicting AOp were determined using a sensitivity analysis. Based on the analysis results, stemming length and rock quality designation (RQD) were identified as two variables with the greatest influence. This study showed that the proposed XGB-GWO method was robust and applicable for predicting AOp driven by blasting operations.\",\"PeriodicalId\":43999,\"journal\":{\"name\":\"AIMS Geosciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/geosci.2023019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/geosci.2023019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of blast-induced air overpressure using a hybrid machine learning model and gene expression programming (GEP): A case study from an iron ore mine
Mine blasting can have a destructive effect on the environment. Among these effects, air overpressure (AOp) is a major concern. Therefore, a careful assessment of the AOp intensity should be conducted before any blasting operation in order to minimize the associated environmental detriment. Several empirical models have been established to predict and control AOp. However, the current empirical methods have many limitations, including low accuracy, poor generalizability, consideration only of linear relationships among influencing parameters, and investigation of only a few influencing parameters. Thus, the current research presents a hybrid model which combines an extreme gradient boosting algorithm (XGB) with grey wolf optimization (GWO) for accurately predicting AOp. Furthermore, an empirical model and gene expression programming (GEP) were used to assess the validity of the hybrid model (XGB-GWO). An analysis of 66 blastings with their corresponding AOp values and influential parameters was conducted to achieve the goals of this research. The efficiency of AOp prediction methods was evaluated in terms of mean absolute error (MAE), coefficient of determination (R2), and root mean square error (RMSE). Based on the calculations, the XGB-GWO model has performed as well as the empirical and GEP models. Next, the most significant parameters for predicting AOp were determined using a sensitivity analysis. Based on the analysis results, stemming length and rock quality designation (RQD) were identified as two variables with the greatest influence. This study showed that the proposed XGB-GWO method was robust and applicable for predicting AOp driven by blasting operations.