希腊海域用于风能和波浪能源生产的系泊混合浮动平台功率效率的理论评估

IF 0.9 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Kimon Kardakaris, D. Konispoliatis, T. Soukissian
{"title":"希腊海域用于风能和波浪能源生产的系泊混合浮动平台功率效率的理论评估","authors":"Kimon Kardakaris, D. Konispoliatis, T. Soukissian","doi":"10.3934/geosci.2023009","DOIUrl":null,"url":null,"abstract":"In this study, an extreme value analysis of wind and wave parameters is presented for three specific locations in the Greek seas that are known to be advantageous in terms of joint power production (both offshore wind and wave) and bathymetric conditions. The analysis is conducted via the Peak-Over-Threshold method, examining wind speed, significant wave height and peak wave period data from the ERA5 reanalysis dataset. Moreover, a multi-purpose floating platform suitable for offshore energy production is presented, which combines wind and wave energy resources exploitation and can be adequately utilized at the selected locations. The analysis is built to incorporate the solutions of the diffraction, motion-dependent and pressure-dependent radiation problems around the floating structure, along with the mooring line and wind turbine (WT) characteristics. Subsequently, a coupled hydro-aero-elastic analysis was performed in the frequency domain, while a dynamic analysis was conducted in order to evaluate the mooring characteristics. Lastly, offshore wind output and absorbed wave energy values were estimated, and different types of mooring systems were compared in terms of efficiency. It has been concluded that the wind energy capacity factor is higher than 50% in all the examined locations, and by the mooring system comparison, the tension-leg platform (TLP) represents the best-case scenario for wave energy absorption.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theoretical evaluation of the power efficiency of a moored hybrid floating platform for wind and wave energy production in the Greek seas\",\"authors\":\"Kimon Kardakaris, D. Konispoliatis, T. Soukissian\",\"doi\":\"10.3934/geosci.2023009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an extreme value analysis of wind and wave parameters is presented for three specific locations in the Greek seas that are known to be advantageous in terms of joint power production (both offshore wind and wave) and bathymetric conditions. The analysis is conducted via the Peak-Over-Threshold method, examining wind speed, significant wave height and peak wave period data from the ERA5 reanalysis dataset. Moreover, a multi-purpose floating platform suitable for offshore energy production is presented, which combines wind and wave energy resources exploitation and can be adequately utilized at the selected locations. The analysis is built to incorporate the solutions of the diffraction, motion-dependent and pressure-dependent radiation problems around the floating structure, along with the mooring line and wind turbine (WT) characteristics. Subsequently, a coupled hydro-aero-elastic analysis was performed in the frequency domain, while a dynamic analysis was conducted in order to evaluate the mooring characteristics. Lastly, offshore wind output and absorbed wave energy values were estimated, and different types of mooring systems were compared in terms of efficiency. It has been concluded that the wind energy capacity factor is higher than 50% in all the examined locations, and by the mooring system comparison, the tension-leg platform (TLP) represents the best-case scenario for wave energy absorption.\",\"PeriodicalId\":43999,\"journal\":{\"name\":\"AIMS Geosciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/geosci.2023009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/geosci.2023009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,对希腊海域的三个特定地点进行了风和波参数的极值分析,这些地点已知在联合发电(海上风和波)和水深条件方面具有优势。利用ERA5再分析数据集的风速、有效波高和峰值波周期数据,采用峰值-超阈值法进行分析。此外,提出了一种适合海上能源生产的多用途浮动平台,该平台结合了风能和波浪能资源的开发,可以在选定的地点充分利用。该分析结合了浮动结构周围的衍射、运动相关和压力相关辐射问题的解决方案,以及系泊线和风力涡轮机(WT)的特性。随后,在频域进行了水-气-弹耦合分析,同时进行了动力分析,以评估系泊特性。最后,估算了海上风力输出和吸收波能值,并比较了不同类型系泊系统的效率。结果表明,在所有测试地点,风能容量因子均大于50%,并且通过系泊系统的比较,张力腿平台(TLP)代表了吸收波浪能的最佳情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical evaluation of the power efficiency of a moored hybrid floating platform for wind and wave energy production in the Greek seas
In this study, an extreme value analysis of wind and wave parameters is presented for three specific locations in the Greek seas that are known to be advantageous in terms of joint power production (both offshore wind and wave) and bathymetric conditions. The analysis is conducted via the Peak-Over-Threshold method, examining wind speed, significant wave height and peak wave period data from the ERA5 reanalysis dataset. Moreover, a multi-purpose floating platform suitable for offshore energy production is presented, which combines wind and wave energy resources exploitation and can be adequately utilized at the selected locations. The analysis is built to incorporate the solutions of the diffraction, motion-dependent and pressure-dependent radiation problems around the floating structure, along with the mooring line and wind turbine (WT) characteristics. Subsequently, a coupled hydro-aero-elastic analysis was performed in the frequency domain, while a dynamic analysis was conducted in order to evaluate the mooring characteristics. Lastly, offshore wind output and absorbed wave energy values were estimated, and different types of mooring systems were compared in terms of efficiency. It has been concluded that the wind energy capacity factor is higher than 50% in all the examined locations, and by the mooring system comparison, the tension-leg platform (TLP) represents the best-case scenario for wave energy absorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Geosciences
AIMS Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
7.70%
发文量
31
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信