西澳大利亚哈默斯利省重力法铁矿床密度调查及其意义

IF 0.9 Q4 GEOSCIENCES, MULTIDISCIPLINARY
W. Guo
{"title":"西澳大利亚哈默斯利省重力法铁矿床密度调查及其意义","authors":"W. Guo","doi":"10.3934/geosci.2023003","DOIUrl":null,"url":null,"abstract":"The Hamersley Province in the northwest of Western Australia contains extensive banded iron formations (BIFs) and large hematite-goethite deposits. Density information of rocks and ores in this region has been scarce. This study reports the results of a systematic density investigations based on more than eight hundred density datasets in the province. This study not only provides a better understanding of density distribution of the rocks and ores in the province, but also allows forward gravity modeling over the known iron-ore deposits to be conducted for exploring the usefulness and effectiveness of gravity surveys for detecting concealed iron-ore deposits in the region. This should have a significant impact on iron-ore mining in the province as the outcropped ores have been mined for over 40 years in the province and the future targets are likely the concealed deposits below the surface. The analysis shows a clear density contrast around 1.0 g/cm3 between the Brockman iron ores and the host BIFs, which should generate clear positive net gravity anomalies over buried large iron-ore deposits. However, porous goethite ores hosted in the Marra Mamba BIFs have an average density of about 2.8 g/cm3 due to porosity about 30–40% in the ores. A density contrast of −0.5 g/cm3 may exist between the goethite ores and BIFs, which would produce net negative gravity anomalies over the deposits. Since most goethite deposits are layered consistently with the host rocks and associated with broad folds, the net gravity anomaly of an orebody itself may generally have the similar shape to the corresponding BIF bedrock. This implies that gravity surveys may be able to detect paleochannels which host the goethite ores, rather than directly detecting the orebody.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density investigation and implications for exploring iron-ore deposits using gravity method in the Hamersley Province, Western Australia\",\"authors\":\"W. Guo\",\"doi\":\"10.3934/geosci.2023003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hamersley Province in the northwest of Western Australia contains extensive banded iron formations (BIFs) and large hematite-goethite deposits. Density information of rocks and ores in this region has been scarce. This study reports the results of a systematic density investigations based on more than eight hundred density datasets in the province. This study not only provides a better understanding of density distribution of the rocks and ores in the province, but also allows forward gravity modeling over the known iron-ore deposits to be conducted for exploring the usefulness and effectiveness of gravity surveys for detecting concealed iron-ore deposits in the region. This should have a significant impact on iron-ore mining in the province as the outcropped ores have been mined for over 40 years in the province and the future targets are likely the concealed deposits below the surface. The analysis shows a clear density contrast around 1.0 g/cm3 between the Brockman iron ores and the host BIFs, which should generate clear positive net gravity anomalies over buried large iron-ore deposits. However, porous goethite ores hosted in the Marra Mamba BIFs have an average density of about 2.8 g/cm3 due to porosity about 30–40% in the ores. A density contrast of −0.5 g/cm3 may exist between the goethite ores and BIFs, which would produce net negative gravity anomalies over the deposits. Since most goethite deposits are layered consistently with the host rocks and associated with broad folds, the net gravity anomaly of an orebody itself may generally have the similar shape to the corresponding BIF bedrock. This implies that gravity surveys may be able to detect paleochannels which host the goethite ores, rather than directly detecting the orebody.\",\"PeriodicalId\":43999,\"journal\":{\"name\":\"AIMS Geosciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/geosci.2023003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/geosci.2023003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

位于西澳大利亚西北部的哈默斯利省含有广泛的带状铁地层(BIFs)和大型赤铁矿针铁矿矿床。该地区岩石和矿石的密度资料很少。本研究报告了基于全省800多个密度数据集的系统密度调查结果。该研究不仅有助于更好地了解本省岩石和矿石的密度分布,而且可以对已知铁矿进行正演重力模拟,以探索重力测量在该地区寻找隐伏铁矿的实用性和有效性。这将对该省的铁矿开采产生重大影响,因为该省露头矿已开采了40多年,未来的目标可能是地表以下的隐伏矿床。分析表明,Brockman铁矿与宿主bif之间的密度差在1.0 g/cm3左右,这应该会在隐伏的大型铁矿床上产生明显的正净重力异常。然而,由于孔隙率约为30-40%,Marra Mamba bif中多孔针铁矿的平均密度约为2.8 g/cm3。针铁矿与bif之间可能存在- 0.5 g/cm3的密度差,这将在矿床上产生净负重力异常。由于大多数针铁矿矿床与寄主岩石层状一致,并伴有宽褶皱,因此矿体本身的净重力异常通常与相应的BIF基岩具有相似的形状。这意味着重力测量可能能够探测到携带针铁矿矿石的古河道,而不是直接探测矿体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density investigation and implications for exploring iron-ore deposits using gravity method in the Hamersley Province, Western Australia
The Hamersley Province in the northwest of Western Australia contains extensive banded iron formations (BIFs) and large hematite-goethite deposits. Density information of rocks and ores in this region has been scarce. This study reports the results of a systematic density investigations based on more than eight hundred density datasets in the province. This study not only provides a better understanding of density distribution of the rocks and ores in the province, but also allows forward gravity modeling over the known iron-ore deposits to be conducted for exploring the usefulness and effectiveness of gravity surveys for detecting concealed iron-ore deposits in the region. This should have a significant impact on iron-ore mining in the province as the outcropped ores have been mined for over 40 years in the province and the future targets are likely the concealed deposits below the surface. The analysis shows a clear density contrast around 1.0 g/cm3 between the Brockman iron ores and the host BIFs, which should generate clear positive net gravity anomalies over buried large iron-ore deposits. However, porous goethite ores hosted in the Marra Mamba BIFs have an average density of about 2.8 g/cm3 due to porosity about 30–40% in the ores. A density contrast of −0.5 g/cm3 may exist between the goethite ores and BIFs, which would produce net negative gravity anomalies over the deposits. Since most goethite deposits are layered consistently with the host rocks and associated with broad folds, the net gravity anomaly of an orebody itself may generally have the similar shape to the corresponding BIF bedrock. This implies that gravity surveys may be able to detect paleochannels which host the goethite ores, rather than directly detecting the orebody.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Geosciences
AIMS Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
7.70%
发文量
31
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信