基于人工神经网络的长期风速预测方法

IF 0.9 Q4 GEOSCIENCES, MULTIDISCIPLINARY
M. Madhiarasan
{"title":"基于人工神经网络的长期风速预测方法","authors":"M. Madhiarasan","doi":"10.3934/geosci.2021031","DOIUrl":null,"url":null,"abstract":"In the current scenario, worldwide renewable energy systems receive renewed interest because of the global reduction of greenhouse gas emissions. This paper proposes a long-term wind speed prediction model based on various artificial neural network approaches such as Improved Back-Propagation Network (IBPN), Multilayer Perceptron Network (MLPN), Recursive Radial Basis Function Network (RRBFN), and Elman Network with five inputs such as wind direction, temperature, relative humidity, precipitation of water content and wind speed. The proposed ANN-based wind speed forecasting models help plan, integrate, and control power systems and wind farms. The simulation result confirms that the proposed Recursive Radial Basis Function Network (RRBFN) model improves the wind speed prediction accuracy and minimizes the error to a minimum compared to other proposed IBPN, MLPN, and Elman Network-based wind speed prediction models.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Long-term wind speed prediction using artificial neural network-based approaches\",\"authors\":\"M. Madhiarasan\",\"doi\":\"10.3934/geosci.2021031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current scenario, worldwide renewable energy systems receive renewed interest because of the global reduction of greenhouse gas emissions. This paper proposes a long-term wind speed prediction model based on various artificial neural network approaches such as Improved Back-Propagation Network (IBPN), Multilayer Perceptron Network (MLPN), Recursive Radial Basis Function Network (RRBFN), and Elman Network with five inputs such as wind direction, temperature, relative humidity, precipitation of water content and wind speed. The proposed ANN-based wind speed forecasting models help plan, integrate, and control power systems and wind farms. The simulation result confirms that the proposed Recursive Radial Basis Function Network (RRBFN) model improves the wind speed prediction accuracy and minimizes the error to a minimum compared to other proposed IBPN, MLPN, and Elman Network-based wind speed prediction models.\",\"PeriodicalId\":43999,\"journal\":{\"name\":\"AIMS Geosciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/geosci.2021031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/geosci.2021031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

在目前的情况下,由于全球温室气体排放的减少,全球可再生能源系统重新受到关注。本文提出了一种基于改进的反向传播网络(IBPN)、多层感知器网络(MLPN)、递归径向基函数网络(RRBFN)和Elman网络等多种人工神经网络方法的长期风速预测模型,该模型具有风向、温度、相对湿度、降水量和风速5个输入。提出的基于人工神经网络的风速预测模型有助于规划、集成和控制电力系统和风力发电场。仿真结果表明,与其他基于IBPN、MLPN和Elman Network的风速预测模型相比,所提出的RRBFN模型提高了风速预测精度,并将误差降至最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term wind speed prediction using artificial neural network-based approaches
In the current scenario, worldwide renewable energy systems receive renewed interest because of the global reduction of greenhouse gas emissions. This paper proposes a long-term wind speed prediction model based on various artificial neural network approaches such as Improved Back-Propagation Network (IBPN), Multilayer Perceptron Network (MLPN), Recursive Radial Basis Function Network (RRBFN), and Elman Network with five inputs such as wind direction, temperature, relative humidity, precipitation of water content and wind speed. The proposed ANN-based wind speed forecasting models help plan, integrate, and control power systems and wind farms. The simulation result confirms that the proposed Recursive Radial Basis Function Network (RRBFN) model improves the wind speed prediction accuracy and minimizes the error to a minimum compared to other proposed IBPN, MLPN, and Elman Network-based wind speed prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Geosciences
AIMS Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
7.70%
发文量
31
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信