喜马拉雅西北部德拉斯断裂带的详细构造地貌

IF 0.9 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Aa. Shah, A. Rajasekharan, N. Batmanathan, Zainul Farhan, Qibah Reduan, JN Malik
{"title":"喜马拉雅西北部德拉斯断裂带的详细构造地貌","authors":"Aa. Shah, A. Rajasekharan, N. Batmanathan, Zainul Farhan, Qibah Reduan, JN Malik","doi":"10.3934/geosci.2021023","DOIUrl":null,"url":null,"abstract":"Our recent mapping of the Dras fault zone in the NW Himalaya has answered one of the most anticipated searches in recent times where strike-slip faulting was expected from the geodetic studies. Therefore, the discovery of the fault is a leap towards the understanding of the causes of active faulting in the region, and how the plate tectonic convergence between India and Eurasia is compensated in the interior portions of the Himalayan collision zone, and what does that imply about the overall convergence budget and the associated earthquake hazards. The present work is an extended version of our previous studies on the mapping of the Dras fault zone, and we show details that were either not available or briefly touched. We have used the 30 m shuttle radar topography to map the tectonic geomorphological features that includes the fault scarps, deflected drainage, triangular facets, ridge crests, faulted Quaternary landforms and so on. The results show that oblique strike-slip faulting is active in the suture zone, which suggests that the active crustal deformation is actively compensated in the interior portions of the orogen, and it is not just restricted to the frontal portions. The Dras fault is a major fault that we have interpreted either as a south dipping oblique backthrust or an oblique north dipping normal fault. The fieldwork was conducted in Leh, but it did not reveal any evidence for active faulting, and the fieldwork in the Dras region was not possible because of the politically sensitive nature of border regions where fieldwork is always an uphill task.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detailed tectonic geomorphology of the Dras fault zone, NW Himalaya\",\"authors\":\"Aa. Shah, A. Rajasekharan, N. Batmanathan, Zainul Farhan, Qibah Reduan, JN Malik\",\"doi\":\"10.3934/geosci.2021023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our recent mapping of the Dras fault zone in the NW Himalaya has answered one of the most anticipated searches in recent times where strike-slip faulting was expected from the geodetic studies. Therefore, the discovery of the fault is a leap towards the understanding of the causes of active faulting in the region, and how the plate tectonic convergence between India and Eurasia is compensated in the interior portions of the Himalayan collision zone, and what does that imply about the overall convergence budget and the associated earthquake hazards. The present work is an extended version of our previous studies on the mapping of the Dras fault zone, and we show details that were either not available or briefly touched. We have used the 30 m shuttle radar topography to map the tectonic geomorphological features that includes the fault scarps, deflected drainage, triangular facets, ridge crests, faulted Quaternary landforms and so on. The results show that oblique strike-slip faulting is active in the suture zone, which suggests that the active crustal deformation is actively compensated in the interior portions of the orogen, and it is not just restricted to the frontal portions. The Dras fault is a major fault that we have interpreted either as a south dipping oblique backthrust or an oblique north dipping normal fault. The fieldwork was conducted in Leh, but it did not reveal any evidence for active faulting, and the fieldwork in the Dras region was not possible because of the politically sensitive nature of border regions where fieldwork is always an uphill task.\",\"PeriodicalId\":43999,\"journal\":{\"name\":\"AIMS Geosciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/geosci.2021023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/geosci.2021023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们最近绘制的喜马拉雅西北部德拉斯断裂带的地图,回答了近年来最令人期待的搜索之一,即从大地测量学研究中预计会出现走滑断层。因此,该断层的发现是对了解该地区活动断层成因的一次飞跃,以及印度和欧亚大陆之间的板块构造收敛如何在喜马拉雅碰撞带的内部部分得到补偿,以及这对总体收敛预算和相关地震危险意味着什么。目前的工作是我们以前对德拉斯断裂带测绘研究的扩展版本,我们展示了没有可用或简要触及的细节。利用30 m穿梭雷达地形,绘制了断层陡坡、偏转水系、三角切面、脊顶、断裂第四纪地貌等构造地貌特征。结果表明,在缝合带内,斜走滑断裂活动明显,表明地壳形变活动在造山带内部得到了积极补偿,而不仅仅局限于前缘。德拉斯断层是一条主要的断层,我们将其解释为向南倾斜的斜逆冲断层或向北倾斜的斜正断层。实地考察是在列城进行的,但没有发现任何活动断层的证据,而且由于边境地区的政治敏感性,实地考察总是一项艰巨的任务,因此不可能在德拉斯地区进行实地考察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detailed tectonic geomorphology of the Dras fault zone, NW Himalaya
Our recent mapping of the Dras fault zone in the NW Himalaya has answered one of the most anticipated searches in recent times where strike-slip faulting was expected from the geodetic studies. Therefore, the discovery of the fault is a leap towards the understanding of the causes of active faulting in the region, and how the plate tectonic convergence between India and Eurasia is compensated in the interior portions of the Himalayan collision zone, and what does that imply about the overall convergence budget and the associated earthquake hazards. The present work is an extended version of our previous studies on the mapping of the Dras fault zone, and we show details that were either not available or briefly touched. We have used the 30 m shuttle radar topography to map the tectonic geomorphological features that includes the fault scarps, deflected drainage, triangular facets, ridge crests, faulted Quaternary landforms and so on. The results show that oblique strike-slip faulting is active in the suture zone, which suggests that the active crustal deformation is actively compensated in the interior portions of the orogen, and it is not just restricted to the frontal portions. The Dras fault is a major fault that we have interpreted either as a south dipping oblique backthrust or an oblique north dipping normal fault. The fieldwork was conducted in Leh, but it did not reveal any evidence for active faulting, and the fieldwork in the Dras region was not possible because of the politically sensitive nature of border regions where fieldwork is always an uphill task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Geosciences
AIMS Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
7.70%
发文量
31
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信