Emmanuel Fleurantin, C. Sampson, Daniel P. Maes, Justin P. Bennett, Tayler Fernandes-Nunez, S. Marx, G. Evensen
{"title":"使用多人群SEIR模型和集合数据同化对SARS-CoV-2大流行期间按种族/族裔受不成比例影响人群的研究","authors":"Emmanuel Fleurantin, C. Sampson, Daniel P. Maes, Justin P. Bennett, Tayler Fernandes-Nunez, S. Marx, G. Evensen","doi":"10.3934/fods.2021022","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number (<inline-formula><tex-math id=\"M1\">\\begin{document}$ R_t $\\end{document}</tex-math></inline-formula>), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an <inline-formula><tex-math id=\"M10000\">\\begin{document}$R_t(n)$\\end{document}</tex-math></inline-formula> for the <inline-formula><tex-math id=\"M2000\">\\begin{document}$n^{th}$\\end{document}</tex-math></inline-formula> population. We do this with three distinct approaches, (1) using the same contact matrices and prior <inline-formula><tex-math id=\"M30000\">\\begin{document}$R_t(n)$\\end{document}</tex-math></inline-formula> for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to <inline-formula><tex-math id=\"M4\">\\begin{document}$R_t(n)$\\end{document}</tex-math></inline-formula>. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"112 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A study of disproportionately affected populations by race/ethnicity during the SARS-CoV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation\",\"authors\":\"Emmanuel Fleurantin, C. Sampson, Daniel P. Maes, Justin P. Bennett, Tayler Fernandes-Nunez, S. Marx, G. Evensen\",\"doi\":\"10.3934/fods.2021022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number (<inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ R_t $\\\\end{document}</tex-math></inline-formula>), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an <inline-formula><tex-math id=\\\"M10000\\\">\\\\begin{document}$R_t(n)$\\\\end{document}</tex-math></inline-formula> for the <inline-formula><tex-math id=\\\"M2000\\\">\\\\begin{document}$n^{th}$\\\\end{document}</tex-math></inline-formula> population. We do this with three distinct approaches, (1) using the same contact matrices and prior <inline-formula><tex-math id=\\\"M30000\\\">\\\\begin{document}$R_t(n)$\\\\end{document}</tex-math></inline-formula> for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$R_t(n)$\\\\end{document}</tex-math></inline-formula>. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.</p>\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2021022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2021022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
摘要
The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number (\begin{document}$ R_t $\end{document}), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an \begin{document}$R_t(n)$\end{document} for the \begin{document}$n^{th}$\end{document} population. We do this with three distinct approaches, (1) using the same contact matrices and prior \begin{document}$R_t(n)$\end{document} for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to \begin{document}$R_t(n)$\end{document}. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.
A study of disproportionately affected populations by race/ethnicity during the SARS-CoV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation
The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number (\begin{document}$ R_t $\end{document}), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an \begin{document}$R_t(n)$\end{document} for the \begin{document}$n^{th}$\end{document} population. We do this with three distinct approaches, (1) using the same contact matrices and prior \begin{document}$R_t(n)$\end{document} for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to \begin{document}$R_t(n)$\end{document}. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.