Christopher Oballe, D. Boothe, P. Franaszczuk, V. Maroulas
{"title":"豆腐:深度学习的拓扑功能单元","authors":"Christopher Oballe, D. Boothe, P. Franaszczuk, V. Maroulas","doi":"10.3934/fods.2021021","DOIUrl":null,"url":null,"abstract":"We propose ToFU, a new trainable neural network unit with a persistence diagram dissimilarity function as its activation. Since persistence diagrams are topological summaries of structures, this new activation measures and learns the topology of data to leverage it in machine learning tasks. We showcase the utility of ToFU in two experiments: one involving the classification of discrete-time autoregressive signals, and another involving a variational autoencoder. In the former, ToFU yields competitive results with networks that use spectral features while outperforming CNN architectures. In the latter, ToFU produces topologically-interpretable latent space representations of inputs without sacrificing reconstruction fidelity.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ToFU: Topology functional units for deep learning\",\"authors\":\"Christopher Oballe, D. Boothe, P. Franaszczuk, V. Maroulas\",\"doi\":\"10.3934/fods.2021021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose ToFU, a new trainable neural network unit with a persistence diagram dissimilarity function as its activation. Since persistence diagrams are topological summaries of structures, this new activation measures and learns the topology of data to leverage it in machine learning tasks. We showcase the utility of ToFU in two experiments: one involving the classification of discrete-time autoregressive signals, and another involving a variational autoencoder. In the former, ToFU yields competitive results with networks that use spectral features while outperforming CNN architectures. In the latter, ToFU produces topologically-interpretable latent space representations of inputs without sacrificing reconstruction fidelity.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2021021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2021021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We propose ToFU, a new trainable neural network unit with a persistence diagram dissimilarity function as its activation. Since persistence diagrams are topological summaries of structures, this new activation measures and learns the topology of data to leverage it in machine learning tasks. We showcase the utility of ToFU in two experiments: one involving the classification of discrete-time autoregressive signals, and another involving a variational autoencoder. In the former, ToFU yields competitive results with networks that use spectral features while outperforming CNN architectures. In the latter, ToFU produces topologically-interpretable latent space representations of inputs without sacrificing reconstruction fidelity.