{"title":"使用集合卡尔曼滤波器学习地标测地线","authors":"Andreas Bock, C. Cotter","doi":"10.3934/fods.2021020","DOIUrl":null,"url":null,"abstract":"We study the problem of diffeomorphometric geodesic landmark matching where the objective is to find a diffeomorphism that, via its group action, maps between two sets of landmarks. It is well-known that the motion of the landmarks, and thereby the diffeomorphism, can be encoded by an initial momentum leading to a formulation where the landmark matching problem can be solved as an optimisation problem over such momenta. The novelty of our work lies in the application of a derivative-free Bayesian inverse method for learning the optimal momentum encoding the diffeomorphic mapping between the template and the target. The method we apply is the ensemble Kalman filter, an extension of the Kalman filter to nonlinear operators. We describe an efficient implementation of the algorithm and show several numerical results for various target shapes.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning landmark geodesics using the ensemble Kalman filter\",\"authors\":\"Andreas Bock, C. Cotter\",\"doi\":\"10.3934/fods.2021020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of diffeomorphometric geodesic landmark matching where the objective is to find a diffeomorphism that, via its group action, maps between two sets of landmarks. It is well-known that the motion of the landmarks, and thereby the diffeomorphism, can be encoded by an initial momentum leading to a formulation where the landmark matching problem can be solved as an optimisation problem over such momenta. The novelty of our work lies in the application of a derivative-free Bayesian inverse method for learning the optimal momentum encoding the diffeomorphic mapping between the template and the target. The method we apply is the ensemble Kalman filter, an extension of the Kalman filter to nonlinear operators. We describe an efficient implementation of the algorithm and show several numerical results for various target shapes.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2021020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2021020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Learning landmark geodesics using the ensemble Kalman filter
We study the problem of diffeomorphometric geodesic landmark matching where the objective is to find a diffeomorphism that, via its group action, maps between two sets of landmarks. It is well-known that the motion of the landmarks, and thereby the diffeomorphism, can be encoded by an initial momentum leading to a formulation where the landmark matching problem can be solved as an optimisation problem over such momenta. The novelty of our work lies in the application of a derivative-free Bayesian inverse method for learning the optimal momentum encoding the diffeomorphic mapping between the template and the target. The method we apply is the ensemble Kalman filter, an extension of the Kalman filter to nonlinear operators. We describe an efficient implementation of the algorithm and show several numerical results for various target shapes.