{"title":"使用持续上同源的内在疾病图","authors":"Daniel Amin, Mikael Vejdemo-Johansson","doi":"10.3934/FODS.2021008","DOIUrl":null,"url":null,"abstract":"We use persistent cohomology and circular coordinates to investigate three datasets related to infectious diseases. We show that all three datasets exhibit circular coordinates that carry information about the data itself. For one of the datasets we are able to recover time post infection from the circular coordinate itself – for the other datasets, this information was not available, but in one we were able to relate the circular coordinate to red blood cell counts and weight changes in the subjects.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intrinsic disease maps using persistent cohomology\",\"authors\":\"Daniel Amin, Mikael Vejdemo-Johansson\",\"doi\":\"10.3934/FODS.2021008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use persistent cohomology and circular coordinates to investigate three datasets related to infectious diseases. We show that all three datasets exhibit circular coordinates that carry information about the data itself. For one of the datasets we are able to recover time post infection from the circular coordinate itself – for the other datasets, this information was not available, but in one we were able to relate the circular coordinate to red blood cell counts and weight changes in the subjects.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/FODS.2021008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/FODS.2021008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Intrinsic disease maps using persistent cohomology
We use persistent cohomology and circular coordinates to investigate three datasets related to infectious diseases. We show that all three datasets exhibit circular coordinates that carry information about the data itself. For one of the datasets we are able to recover time post infection from the circular coordinate itself – for the other datasets, this information was not available, but in one we were able to relate the circular coordinate to red blood cell counts and weight changes in the subjects.