{"title":"多尺度下数据约简和学习的层次近似","authors":"P. Shekhar, A. Patra","doi":"10.3934/fods.2020008","DOIUrl":null,"url":null,"abstract":"This paper describes a hierarchical learning strategy for generating sparse representations of multivariate datasets. The hierarchy arises from approximation spaces considered at successively finer scales. A detailed analysis of stability, convergence and behavior of error functionals associated with the approximations are presented, along with a well chosen set of applications. Results show the performance of the approach as a data reduction mechanism for both synthetic (univariate and multivariate) and a real dataset (geo-spatial). The sparse representation generated is shown to efficiently reconstruct data and minimize error in prediction. The approach is also shown to generalize well to unseen samples, extending its prospective application to statistical learning problems.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hierarchical approximations for data reduction and learning at multiple scales\",\"authors\":\"P. Shekhar, A. Patra\",\"doi\":\"10.3934/fods.2020008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a hierarchical learning strategy for generating sparse representations of multivariate datasets. The hierarchy arises from approximation spaces considered at successively finer scales. A detailed analysis of stability, convergence and behavior of error functionals associated with the approximations are presented, along with a well chosen set of applications. Results show the performance of the approach as a data reduction mechanism for both synthetic (univariate and multivariate) and a real dataset (geo-spatial). The sparse representation generated is shown to efficiently reconstruct data and minimize error in prediction. The approach is also shown to generalize well to unseen samples, extending its prospective application to statistical learning problems.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2020008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Hierarchical approximations for data reduction and learning at multiple scales
This paper describes a hierarchical learning strategy for generating sparse representations of multivariate datasets. The hierarchy arises from approximation spaces considered at successively finer scales. A detailed analysis of stability, convergence and behavior of error functionals associated with the approximations are presented, along with a well chosen set of applications. Results show the performance of the approach as a data reduction mechanism for both synthetic (univariate and multivariate) and a real dataset (geo-spatial). The sparse representation generated is shown to efficiently reconstruct data and minimize error in prediction. The approach is also shown to generalize well to unseen samples, extending its prospective application to statistical learning problems.