基于细谷多项式的运算矩阵对一类时间分数扩散方程的数值研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ping Zhou, H. Jafari, R. Ganji, S. Narsale
{"title":"基于细谷多项式的运算矩阵对一类时间分数扩散方程的数值研究","authors":"Ping Zhou, H. Jafari, R. Ganji, S. Narsale","doi":"10.3934/era.2023231","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a numerical method by using operational matrices based on Hosoya polynomials of simple paths to find the approximate solution of diffusion equations of fractional order with respect to time. This method is applied to certain diffusion equations like time fractional advection-diffusion equations and time fractional Kolmogorov equations. Here we use the Atangana-Baleanu fractional derivative. With the help of this approach we convert these equations to a set of algebraic equations, which is easier to be solved. Also, the error bound is provided. The obtained numerical solutions using the presented method are compared with the exact solutions. The numerical results show that the suggested method is convenient and accurate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial\",\"authors\":\"Ping Zhou, H. Jafari, R. Ganji, S. Narsale\",\"doi\":\"10.3934/era.2023231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a numerical method by using operational matrices based on Hosoya polynomials of simple paths to find the approximate solution of diffusion equations of fractional order with respect to time. This method is applied to certain diffusion equations like time fractional advection-diffusion equations and time fractional Kolmogorov equations. Here we use the Atangana-Baleanu fractional derivative. With the help of this approach we convert these equations to a set of algebraic equations, which is easier to be solved. Also, the error bound is provided. The obtained numerical solutions using the presented method are compared with the exact solutions. The numerical results show that the suggested method is convenient and accurate.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023231\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用基于简单路径细谷多项式的运算矩阵求分数阶扩散方程关于时间的近似解的数值方法。该方法适用于某些扩散方程,如时间分数阶平流扩散方程和时间分数阶Kolmogorov方程。这里我们使用Atangana-Baleanu分数阶导数。利用这种方法,我们将这些方程转化为一组代数方程,求解起来更加容易。此外,还提供了错误界限。用该方法得到的数值解与精确解进行了比较。数值结果表明,该方法方便、准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial
In this paper, we develop a numerical method by using operational matrices based on Hosoya polynomials of simple paths to find the approximate solution of diffusion equations of fractional order with respect to time. This method is applied to certain diffusion equations like time fractional advection-diffusion equations and time fractional Kolmogorov equations. Here we use the Atangana-Baleanu fractional derivative. With the help of this approach we convert these equations to a set of algebraic equations, which is easier to be solved. Also, the error bound is provided. The obtained numerical solutions using the presented method are compared with the exact solutions. The numerical results show that the suggested method is convenient and accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信