{"title":"基于RFDNet神经网络的卫星道路提取方法","authors":"Weichi Liu, Gaifang Dong, Mingxin Zou","doi":"10.3934/era.2023223","DOIUrl":null,"url":null,"abstract":"The road network system is the core foundation of a city. Extracting road information from remote sensing images has become an important research direction in the current traffic information industry. The efficient residual factorized convolutional neural network (ERFNet) is a residual convolutional neural network with good application value in the field of biological information, but it has a weak effect on urban road network extraction. To solve this problem, we developed a road network extraction method for remote sensing images by using an improved ERFNet network. First, the design of the network structure is based on an ERFNet; we added the DoubleConv module and increased the number of dilated convolution operations to build the road network extraction model. Second, in the training process, the strategy of dynamically setting the learning rate is adopted and combined with batch normalization and dropout methods to avoid overfitting and enhance the generalization ability of the model. Finally, the morphological filtering method is used to eliminate the image noise, and the ultimate extraction result of the road network is obtained. The experimental results show that the method proposed in this paper has an average F1 score of 93.37% for five test images, which is superior to the ERFNet (91.31%) and U-net (87.34%). The average value of IoU is 77.35%, which is also better than ERFNet (71.08%) and U-net (65.64%).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite road extraction method based on RFDNet neural network\",\"authors\":\"Weichi Liu, Gaifang Dong, Mingxin Zou\",\"doi\":\"10.3934/era.2023223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The road network system is the core foundation of a city. Extracting road information from remote sensing images has become an important research direction in the current traffic information industry. The efficient residual factorized convolutional neural network (ERFNet) is a residual convolutional neural network with good application value in the field of biological information, but it has a weak effect on urban road network extraction. To solve this problem, we developed a road network extraction method for remote sensing images by using an improved ERFNet network. First, the design of the network structure is based on an ERFNet; we added the DoubleConv module and increased the number of dilated convolution operations to build the road network extraction model. Second, in the training process, the strategy of dynamically setting the learning rate is adopted and combined with batch normalization and dropout methods to avoid overfitting and enhance the generalization ability of the model. Finally, the morphological filtering method is used to eliminate the image noise, and the ultimate extraction result of the road network is obtained. The experimental results show that the method proposed in this paper has an average F1 score of 93.37% for five test images, which is superior to the ERFNet (91.31%) and U-net (87.34%). The average value of IoU is 77.35%, which is also better than ERFNet (71.08%) and U-net (65.64%).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023223\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023223","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Satellite road extraction method based on RFDNet neural network
The road network system is the core foundation of a city. Extracting road information from remote sensing images has become an important research direction in the current traffic information industry. The efficient residual factorized convolutional neural network (ERFNet) is a residual convolutional neural network with good application value in the field of biological information, but it has a weak effect on urban road network extraction. To solve this problem, we developed a road network extraction method for remote sensing images by using an improved ERFNet network. First, the design of the network structure is based on an ERFNet; we added the DoubleConv module and increased the number of dilated convolution operations to build the road network extraction model. Second, in the training process, the strategy of dynamically setting the learning rate is adopted and combined with batch normalization and dropout methods to avoid overfitting and enhance the generalization ability of the model. Finally, the morphological filtering method is used to eliminate the image noise, and the ultimate extraction result of the road network is obtained. The experimental results show that the method proposed in this paper has an average F1 score of 93.37% for five test images, which is superior to the ERFNet (91.31%) and U-net (87.34%). The average value of IoU is 77.35%, which is also better than ERFNet (71.08%) and U-net (65.64%).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.