{"title":"内部逆散射问题的一种混合方法","authors":"","doi":"10.3934/era.2023168","DOIUrl":null,"url":null,"abstract":"In this paper, the interior inverse scattering problem of a cavity is considered. By use of a general boundary condition, we can reconstruct the shape of the cavity without a priori information of the boundary condition type. The method of fundamental solutions (MFS) with regularization is formulated for solving the scattered field and its normal derivative on the cavity boundary. Newton's method is employed to reconstruct the cavity boundary by satisfying the general boundary condition. This hybrid method copes with the ill-posedness of the inverse problem in the MFS step and deals with the nonlinearity in the Newton's step. Some computational examples are presented to demonstrate the effectiveness of our method.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid method for the interior inverse scattering problem\",\"authors\":\"\",\"doi\":\"10.3934/era.2023168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the interior inverse scattering problem of a cavity is considered. By use of a general boundary condition, we can reconstruct the shape of the cavity without a priori information of the boundary condition type. The method of fundamental solutions (MFS) with regularization is formulated for solving the scattered field and its normal derivative on the cavity boundary. Newton's method is employed to reconstruct the cavity boundary by satisfying the general boundary condition. This hybrid method copes with the ill-posedness of the inverse problem in the MFS step and deals with the nonlinearity in the Newton's step. Some computational examples are presented to demonstrate the effectiveness of our method.\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023168\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A hybrid method for the interior inverse scattering problem
In this paper, the interior inverse scattering problem of a cavity is considered. By use of a general boundary condition, we can reconstruct the shape of the cavity without a priori information of the boundary condition type. The method of fundamental solutions (MFS) with regularization is formulated for solving the scattered field and its normal derivative on the cavity boundary. Newton's method is employed to reconstruct the cavity boundary by satisfying the general boundary condition. This hybrid method copes with the ill-posedness of the inverse problem in the MFS step and deals with the nonlinearity in the Newton's step. Some computational examples are presented to demonstrate the effectiveness of our method.