{"title":"光纤通信中分数-随机Fokas-Lenells方程的精确解","authors":"S. Albosaily, W. Mohammed, M. El-Morshedy","doi":"10.3934/era.2023180","DOIUrl":null,"url":null,"abstract":"The fractional-stochastic Fokas-Lenells equation (FSFLE) in the Stratonovich sense is taken into account here. The modified mapping method is used to generate new trigonometric, hyperbolic, elliptic and rational stochastic fractional solutions. Because the Fokas-Lenells equation has many implementations in telecommunication modes, complex system theory, quantum field theory, and quantum mechanics, the obtained solutions can be employed to describe a wide range of exciting physical phenomena. We plot several 2D and 3D diagrams to demonstrate how multiplicative noise and fractional derivatives affect the analytical solutions of the FSFLE. Also, we show how multiplicative noise at zero stabilizes FSFLE solutions.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication\",\"authors\":\"S. Albosaily, W. Mohammed, M. El-Morshedy\",\"doi\":\"10.3934/era.2023180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractional-stochastic Fokas-Lenells equation (FSFLE) in the Stratonovich sense is taken into account here. The modified mapping method is used to generate new trigonometric, hyperbolic, elliptic and rational stochastic fractional solutions. Because the Fokas-Lenells equation has many implementations in telecommunication modes, complex system theory, quantum field theory, and quantum mechanics, the obtained solutions can be employed to describe a wide range of exciting physical phenomena. We plot several 2D and 3D diagrams to demonstrate how multiplicative noise and fractional derivatives affect the analytical solutions of the FSFLE. Also, we show how multiplicative noise at zero stabilizes FSFLE solutions.\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023180\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023180","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication
The fractional-stochastic Fokas-Lenells equation (FSFLE) in the Stratonovich sense is taken into account here. The modified mapping method is used to generate new trigonometric, hyperbolic, elliptic and rational stochastic fractional solutions. Because the Fokas-Lenells equation has many implementations in telecommunication modes, complex system theory, quantum field theory, and quantum mechanics, the obtained solutions can be employed to describe a wide range of exciting physical phenomena. We plot several 2D and 3D diagrams to demonstrate how multiplicative noise and fractional derivatives affect the analytical solutions of the FSFLE. Also, we show how multiplicative noise at zero stabilizes FSFLE solutions.