分析Hadamard拟群积的一种计算方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Raúl M. Falcón, V. Álvarez, J. Armario, M. Frau, F. Gudiel, M. Güemes
{"title":"分析Hadamard拟群积的一种计算方法","authors":"Raúl M. Falcón, V. Álvarez, J. Armario, M. Frau, F. Gudiel, M. Güemes","doi":"10.3934/era.2023164","DOIUrl":null,"url":null,"abstract":"Based on the binary product described by any Latin square, the Hadamard quasigroup product is introduced in this paper as a natural generalization of the classical Hadamard product of matrices. The successive iteration of this new product is endowed with a cyclic behaviour that enables one to define a pair of new isomorphism invariants of Latin squares. Of particular interest is the set of Latin squares for which this iteration preserves the Latin square property, which requires the existence of successive localized Latin transversals within the Latin square under consideration. In order to enumerate and classify, up to isomorphism, these Latin squares, we propose a computational algebraic geometry approach based on the computation of reduced Gröbner bases. To illustrate this point, we obtain the classification of the sought Latin squares, for order up to six, by using the open computer algebra system for polynomial computations Singular.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational approach to analyze the Hadamard quasigroup product\",\"authors\":\"Raúl M. Falcón, V. Álvarez, J. Armario, M. Frau, F. Gudiel, M. Güemes\",\"doi\":\"10.3934/era.2023164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the binary product described by any Latin square, the Hadamard quasigroup product is introduced in this paper as a natural generalization of the classical Hadamard product of matrices. The successive iteration of this new product is endowed with a cyclic behaviour that enables one to define a pair of new isomorphism invariants of Latin squares. Of particular interest is the set of Latin squares for which this iteration preserves the Latin square property, which requires the existence of successive localized Latin transversals within the Latin square under consideration. In order to enumerate and classify, up to isomorphism, these Latin squares, we propose a computational algebraic geometry approach based on the computation of reduced Gröbner bases. To illustrate this point, we obtain the classification of the sought Latin squares, for order up to six, by using the open computer algebra system for polynomial computations Singular.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023164\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文从任意拉丁平方描述的二元积出发,作为经典矩阵的Hadamard积的自然推广,引入了Hadamard拟群积。该新积的连续迭代具有循环性质,可以定义一对新的拉丁平方同构不变量。特别有趣的是拉丁平方的集合,这个迭代保留了拉丁平方的性质,这要求在考虑的拉丁平方内存在连续的局部拉丁截线。为了列举和分类这些拉丁平方,直到同构,我们提出了一种基于Gröbner基的计算的计算代数几何方法。为了说明这一点,我们利用开放的计算机代数系统对多项式进行奇异计算,得到了所寻拉丁平方的分类,其阶数为6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computational approach to analyze the Hadamard quasigroup product
Based on the binary product described by any Latin square, the Hadamard quasigroup product is introduced in this paper as a natural generalization of the classical Hadamard product of matrices. The successive iteration of this new product is endowed with a cyclic behaviour that enables one to define a pair of new isomorphism invariants of Latin squares. Of particular interest is the set of Latin squares for which this iteration preserves the Latin square property, which requires the existence of successive localized Latin transversals within the Latin square under consideration. In order to enumerate and classify, up to isomorphism, these Latin squares, we propose a computational algebraic geometry approach based on the computation of reduced Gröbner bases. To illustrate this point, we obtain the classification of the sought Latin squares, for order up to six, by using the open computer algebra system for polynomial computations Singular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信